The Laplacian Eigenvalues of Graphs

LI Jianxi

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Dr. SHIU Wai Chee

Hong Kong Baptist University

June 2010
Abstract

The Laplacian matrix of a graph is the difference between the diagonal matrix of its vertex degrees and its adjacency matrix. The Laplacian eigenvalues of a graph are those eigenvalues of the associated Laplacian matrix. Laplacian eigenvalues are closely related to almost all major invariants of a graph, linking one extremal property to another. There is no question that Laplacian eigenvalues play a central role in our fundamental understanding of graphs. In the past decades, the Laplacian eigenvalues of graphs have received more and more attention, since they have been applied to several fields, such as randomized algorithms, combinatorial optimization problems and machine learning. In this thesis, we focus on the study of the relationships between Laplacian eigenvalues and structural properties of a graph. Various interesting results on the Laplacian spectral radius, the kth largest Laplacian eigenvalue and the algebraic connectivity of a graph are presented. In addition, we investigate some other indices related to the Laplacian eigenvalues of a graph, such as the number of spanning trees, the Laplacian Estrada index, the Laplacian separator and the Laplacian spread. Lastly, we propose some possible directions for further investigating graph Laplacian eigenvalues at the end of this thesis.

Keywords: Graph, adjacency matrix, Laplacian matrix, eigenvalues, spectral radius, Laplacian eigenvalue, Laplacian spectral radius, kth largest Laplacian eigenvalue, algebraic connectivity, spanning tree, Laplacian Estrada index, Laplacian separator, Laplacian spread, bound.
Table of Contents

Declaration

Abstract

Acknowledgements

Table of Contents

List of Figures

Chapter 1 Introduction

1.1 Graphs

1.2 Matrices and eigenvalues of graphs

1.2.1 Matrices associated with a graph

1.2.2 Laplacian eigenvalues of graphs obtained from operations

1.3 Research background

1.4 Structure of the thesis

Chapter 2 The Laplacian spectral radii of graphs

2.1 Bounds on the Laplacian spectral radii of graphs

2.1.1 Irregular graphs

2.1.2 Triangle-free graphs

2.1.3 Bipartite graphs

2.1.4 Conclusion

2.2 Graphs with maximum Laplacian spectral radii
2.2.1 Preliminaries .. 26
2.2.2 Trees and unicyclic graphs 28
2.2.3 Bipartite graphs .. 31
2.2.4 Quasi-tree graphs 42
2.2.5 Graphs with \(k \) cut-edges 44
2.2.6 Graphs with connectivity at most \(k \) 45

Chapter 3 The \(k \)th Laplacian eigenvalue of a graph 48

3.1 The second Laplacian eigenvalue of a graph 48
3.1.1 Trees .. 49
3.1.2 Unicyclic graphs 50
3.2 The \(k \)th Laplacian eigenvalue of a tree 55

Chapter 4 The algebraic connectivity of a graph 61

4.1 Preliminaries ... 62
4.2 Trees ... 65
4.2.1 Trees with maximum degree 3 67
4.2.2 Ordering trees by their algebraic connectivities 77
4.3 Unicyclic graphs ... 79
4.3.1 Unicyclic graphs with girth 3 80
4.3.2 Ordering unicyclic graphs by their algebraic connectivities .. 86

Chapter 5 Other results related to the Laplacian eigenvalues of a graph 91

5.1 The number of spanning trees of a graph 91
5.1.1 The number of spanning trees of the join and the corona of graphs .. 94
5.1.2 Bounds on the number of spanning trees of a graph 97
5.2 Laplacian Estrada index of a graph 101
5.2.1 The Laplacian Estrada index concept 102
5.2.2 Bounds on the Laplacian Estrada index involving graph Laplacian energy .. 107
5.2.3 More on the Laplacian Estrada index 109

5.3 Laplacian separator of a graph 112
 5.3.1 Trees with maximum (Laplacian) separator 113
 5.3.2 Unicyclic graphs with maximum (Laplacian) separator 115

5.4 Laplacian spread of a graph 116

Chapter 6 Conclusion and Future works 120
 6.1 Summary of the thesis 120
 6.2 Further research 121

Bibliography 123

Curriculum Vitae 132