Mitogen Activated Protein Kinase Cascades Mediate the Regulation of Antioxidant Enzymes under Abiotic Stresses in *Arabidopsis*

XING Yu

A thesis submitted in partial fulfillment of the requirements
For the degree of
Doctor of Philosophy

Principal Supervisor: Prof. ZHANG Jianhua

Hong Kong Baptist University

August 2007
Abstract

Catalase and H$_2$O$_2$ play important roles in plant adaptive responses to biotic and abiotic stresses, whereas little is known about their upstream signaling cascades leading to the gene expression of catalase and H$_2$O$_2$ production. We here report that catalase gene family regulated by AtMKK1, an Arabidopsis MAPK kinase, responded differently to ABA, drought and salt stress. *CAT1* expression was sensitive to ABA, drought and salt stresses, and at the mean time, AtMKK1 activity was also sensitively activated by all these stresses. Both *CAT1* expression and AtMKK1 activity could be highly inhibited by MAPK signaling inhibitor PD98059, suggesting that AtMKK1 might be involved in the stress-induced *CAT1* expression. The *AtMKK1* mutant, *mkk1*, totally blocked the stressed-induced *CAT1* expression, and interestingly, the stress-induced H$_2$O$_2$ production was also blocked. Over-expression of *AtMKK1* significantly promoted the stress-induced *CAT1* expression, and also promoted H$_2$O$_2$ production. These results conclusively indicate that stress-induced *CAT1* expression is mediated by AtMKK1, and further more, the triggering of H$_2$O$_2$ production might be involved in the process, as further proved by the observation that *CAT1* expression was sensitively induced by applied H$_2$O$_2$. Surprisingly, the signaling mechanisms for the stress-induced gene expression of *CAT2* and *CAT3* were observed to be rather different from *CAT1*. Except for drought stress, *CAT2* and *CAT3* expressions were not sensitive to ABA or salt stress, and AtMKK1 was not proved to be involved in the drought-induced *CAT2*, or *CAT3* expressions. Further studies showed that stomatal movement was much less sensitive to ABA in *mkk1*, and over-expression of *AtMKK1* in Arabidopsis increased the plant resistance to drought or salt stress, which further demonstrate that AtMKK1 is a crucial mediator in plant stress signal transduction.

In response to ABA treatment, *CAT1* expression was remarkably induced, and moreover, the *CAT1* expression and H$_2$O$_2$ production were both totally arrested in *mkk1*. Over-expression of *AtMKK1* significantly enhanced the ABA-induced *CAT1* expression and H$_2$O$_2$ production. Further studies showed that the ABA-induced *CAT1* expression and H$_2$O$_2$ production also were blocked in *mpk6* mutant plants, and by contrast, promoted in *AtMPK6* overexpressing plants. Moreover, the AtMPK6 kinase activity was observed to be activated by ABA in an AtMKK1-dependent manner. These data strongly suggest that the ABA-induced *CAT1* expression and H$_2$O$_2$ production are mediated by AtMKK1 via AtMPK6-coupled signaling. Further investigation showed that, compared to wild type plants, *mkk1* exhibited a much less sensitivity in germination to ABA, and a decreased tolerance to drought, whereas over-expression of *AtMKK1* exhibited a hyper-sensitivity to ABA in germination and an increased resistance to drought, suggesting that AtMKK1 is a key mediator in the ABA signaling cascades.

Superoxide dismutases (SODs) play important roles in plant adaptive response to biotic and abiotic stresses but little is known about their upstream signaling cascades leading to their gene expressions. We report that salt-induced gene expression of the
iron superoxide dismutases, *FSD2* and *FSD3*, were mediated by MKK5, one of *Arabidopsis* MAPK kinases. *FSD2* and *FSD3* expressions were remarkably increased in response to salt treatment but were blocked in *M KK5* null plants, *mkk5*. Using the transient expression assay in protoplasts, we found that MKK5 was also activated in response to salt stress. The over-expression of MKK5 in wild type plants enhanced the plant salt tolerance. In contrast, *mkk5* null mutant plants exhibited hypersensitivity to salt stress and in germination on salt-containing media. These data demonstrate that MKK5 is a key signal transducer of salt stress in *Arabidopsis*. Moreover, we identified that MPK6 was also involved in the MKK5-mediated iron superoxide dismutases (FSD) signaling pathway in salt stress. The kinase activity of MPK6 was totally arrested in MKK5 null plant-*mkk5*, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the AtMEKK1 protein that was also involved in the salt-induced FSD signaling pathway. These data strongly suggest that salt-induced FSD2 and FSD3 expressions are mediated by AtMEKK1 via MKK5-MPK6-coupled signaling. It is suggested that there is a complete MAP kinase cascade (MEKK1, MKK5 and MPK6) that mediates the salt-induced iron superoxide dismutases.

MKK5 is known involved in the oxidative stress-induced copper/zinc superoxide dismutases (Cu/Zn SODs) signaling pathway. Cu/Zn SODs transcripts can be induced in response to oxidative stress, but the regulatory mechanism of the induction is unknown. We found that *MKK5* expression was upregulated by oxidative stresses and this upregulation was important for *CSD1* and *CSD2* mRNA accumulation and oxidative stress tolerance. This should be an important role of MKK5 in oxidative stress-induced Cu/Zn SODs signaling. Our results showed that CSD1 and CSD2 expression was arrested in the MKK5 mutant, *mkk5*. Further more, transgenic *Arabidopsis* plants overexpressing *MKK5* accumulated more CSD1 and CSD2 mRNA than wild type plants and were consequently much more tolerant to high light, heavy metals and other oxidative stresses; whereas, the mutants of *mkk5*, *csd1* and *csd2* were more sensitive than wild type plants in response to oxidative stress. Contrast with the mutants of *mkk5*, *csd1* and *csd2*, double mutant *mkk5 csd1* was the most sensitive in response to the high light, heavy metal and other oxidative stresses. Results suggest that MKK5-guided upgrade of CSD1 and CSD2 in transgenic plants is an effective new approach to improve plant productivity under stress conditions.
Table of Contents

Declaration..i

Abstract...ii

Acknowledgements.. iv

Table of Contents.. v

List of Figures..xi

List of Abbreviations..xiv

Chapter 1 General Introduction...1

1.1 Signaling Modules in Abiotic Stress Responses...2

1.2 Biochemical Properties of Reactive Oxygen Species...2

1.3 Intercellular Origins of ROS in Plants...3

1.4 Oxidative Stresses in Plants...6

1.5 Antioxidant Defense Systems in Plants..7

1.5.1 Antioxidant Enzymes..8

1.5.2 Non-Enzymic Antioxidant Metabolites...11

1.6 Mitogen Activated Protein Kinases (MAPKs)...14

1.6.1 MAPK Cascades in Yeast...15

1.6.2 MAPK Cascades in Animals...18

1.6.3 MAPK Cascades in Plants..20

1.6.3.1 MAP Kinases..20

1.6.3.2 MAP Kinase Kinases...21

1.6.3.3 MAP Kinase Kinase Kinases..22

1.6.3.4 MAPK Cascades...24

1.6.4 Functions of MAPK Pathways in Plants...25

1.6.4.1 The Role of MAPK Pathways in Stress Signaling..25

1.6.4.1.1 Mechanical Stress...25

1.6.4.1.2 Wound Signaling...26

1.6.4.1.3 Drought Stress..31
1.6.4.1.4 Osmotic Stress--- 32
1.6.4.1.5 High Temperature Stress------------------------------------- 34
1.6.4.1.6 Low Temperature Stress-------------------------------------- 35
1.6.4.2 The Role of MAPK Pathways in Signaling of Plant Hormones------35
 1.6.4.2.1 Abscisic Acid---37
 1.6.4.2.2 Gibberellin--39
 1.6.4.2.3 Ethylene---40
 1.6.4.2.4 Auxin---42
 1.6.4.2.5 Cytokinin---44
1.6.5 Concluding Remarks and Perspectives-------------------------------45

Chapter 2 Catalase (CAT) Multigene Family Regulated by AtMKK1 Responds
Differently to Drought and Salt Stresses and Abscisic Acid Treatments---47
2.1 Introduction--47
2.2 Results---49
 2.2.1 Gene Expressions of Catalase Multigene Family in Response to ABA, Drought and Salt stresses------------------------49
 2.2.2 AtMKK1 Mediates CAT1 Expression in Response to ABA, Drought and Salt Stress--------------------------------------50
 2.2.3 AtMKK1 Mediates Stress-Induced H₂O₂ Production------------------53
 2.2.4 H₂O₂ Is Involved in AtMKK1-Mediated CAT1 Expression-------------53
 2.2.5 AtMKK1 Is Involved in ABA-Regulated Stomatal Movement---------54
 2.2.6 AtMKK1-Overexpression Rendered Arabidopsis Enhanced Drought and Salt Tolerance-------------------------------------54
 2.2.7 ABA, Water deficit, Salt-Induced Superoxide Production in mkk1, Wild Type and AtMKK1 Over-Expressing Plants-------------------55
2.3 Discussion--55
2.4 Materials and Methods---71
2.4.1 Plant Materials and Stress Treatments--71
2.4.2 Identification and Isolation of mkk1 Mutants----------------------------------71
2.4.3 Plasmid Construction--71
2.4.4 Total RNA Extraction, Semi-Quantitative RT-PCR and Northern Blot-------------72
2.4.5 Protein Extraction, Immunoprecipitation and Kinase Activity Assay------------73
2.4.6 Introduction of Fusion Genes into Arabidopsis Protoplasts----------------------73
2.4.7 Assay for Transient GUS Activity--74
2.4.8 H₂O₂ Measurement---75
2.4.9 Determination of O₂⁻ Production in Arabidopsis Leaves------------------------75
2.4.10 Epidermal Strip Bioassay--75
2.4.11 Generation of AtMKK1 Over-Expressing Plants----------------------------------76
2.4.12 Drought and Salt Tolerance Analyses---76
2.4.13 Accession Numbers---77

Chapter 3 AtMKK1 Mediates ABA-Induced CAT1 Expression and H₂O₂ Production via AtMPK6-Coupled Signaling-----------------------------78

3.1 Introduction---78
3.2 Results--80

3.2.1 CAT1 expression in response to ABA and pharmacological evidence that CAT1 expression is mediated by MAPKs signaling-------------------80
3.2.2 AtMKK1 and AtMPK6 are implicated in CAT1 expression---------------------------80
3.2.3 AtMKK1 and AtMPK6 Are Implicated in H₂O₂ Production---------------------------83
3.2.4 H₂O₂ Is Possibly Involved in ABA-Induced CAT1 Expression----------------------84
3.2.5 AtMPK6 Functions Downstream of AtMKK1--84
3.2.6 AtMKK1-Overexpression Enhanced Drought-Resistance and Germinating
3.3 Discussion

3.4 Materials and Methods

3.4.1 Plant Materials and Stress Treatments

3.4.2 Pharmacological Experiments

3.4.3 Identification and Isolation of \textit{mkk1} and Other Mutants

3.4.4 Plasmid Construction

3.4.5 Total RNA Extraction, Semi-Quantitative RT-PCR and RNA Blot Analysis

3.4.6 Immunocomplex Kinase Assays

3.4.7 Hydrogen Peroxide Measurement

3.4.8 Histochemical Detection of Hydrogen Peroxide

3.4.9 Dye Loading

3.4.10 Laser Scanning Confocal Microscopy

3.4.11 Introduction of Fusion Genes into \textit{Arabidopsis} Protoplasts

3.4.12 Assay for Transient GUS Activity

3.4.13 ABA and Drought Tolerance Analyses

3.4.14 Generation of \textit{AtMKK1} and \textit{AtMPK6} Over-Expressing Plants

3.4.15 Accession Numbers

Chapter 4 Upregulation of MKK5 Mediates the Induction of Two Cu/Zn Superoxide Dismutase Genes and Is Involved in the Oxidative Stress Tolerance in \textit{Arabidopsis}

4.1 Introduction

4.2 Results

4.2.1 Isolation and Characterization of T-DNA Insertion Mutants and of Transgenic Plants Over-Expressing \textit{MKK5}

4.2.2 Oxidative Stress-Induced MKK5

4.2.3 Oxidative Stress Activates CSD Gene Family Expression in \textit{Arabidopsis}

4.2.4 Oxidative Stress-Induced CSD Signals through MKK5

4.2.5 Isolation and Characterization of T-DNA Insertion Mutants of \textit{CSD1} and
Chapter 5 The MKK5 Cascades Mediate Salt-Induced Iron Superoxide Dismutases (SODs) Signaling Pathway in Arabidopsis

5.1 Introduction

5.2 Results

5.2.1 Salt-Induced Iron Superoxide Dismutases (FeSODs)

5.2.2 Salt-Induced FSD Signals through MKK5

5.2.3 The Involvement of Specific MAPKs in Salt-Induced FSD Signaling

5.2.4 Salt Stress Activation of MKK5

5.2.5 MKK5-Overexpressing Plants Exhibit Salt Tolerance Phenotypes
5.2.6 AtMEKK1 Interacts with MKK5---146
5.3 Discussion---147
5.4 Materials and Methods---159
 5.4.1 Plant Materials and Stress Treatments-------------------------------159
 5.4.2 Plasmid Construction---159
 5.4.2.1 GUS-Tagged Reporter Vector Construction--------------------------159
 5.4.2.2 Effector Vector Construction--159
 5.4.3 Total RNA Extraction, RT-PCR and Northern Blot Analysis------------160
 5.4.4 Introduction of Fusion Genes into Arabidopsis Protoplasts----------160
 5.4.5 Assay for Transient GUS Activity------------------------------------160
 5.4.6 Expression and Purification of GST Fusion Proteins------------------160
 5.4.7 Protein Extraction, Immunoprecipitation and Immunocomplex Kinase Assays---160
 5.4.8 Generation of MKK5 Over-Expressing Plants---------------------------160
 5.4.9 Yeast Two-Hybrid Interaction--161
 5.4.10 Accession Numbers--161

Chapter 6 General Conclusion---162

References--166

Curriculum Vitae--200