Hepatitis B Virus
and
Single Nucleotide Polymorphisms

LAU Chi Chiu

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Prof. Ricky WONG Ngok Shun

Hong Kong Baptist University

May 2007
Abstract

Hepatitis B is a major disease which causes serious public health problems worldwide. Hepatitis B virus (HBV) genome is composed of four open reading frames (ORFs), i.e. core C, surface S, polymerase P and X gene. The development of point mutations or single nucleotide polymorphisms (SNPs) on these genes during chronic HBV infection is associated with liver cirrhosis and hepatocellular carcinoma (HCC). Therefore, high throughput and simultaneous screening for these mutations is highly advocated for monitoring the disease development. Firstly, arrayed primer extension (APEX) was applied for the detection of HBV SNPs at the pre-C/BCP region. APEX was optimized APEX for simultaneous detection of 8 SNPs in the pre-C/BCP region. The Pre-C/BCP regions of HBV from 36 HBV infected patients were amplified by PCR. After purification and fragmentation, the short single-stranded HBV DNA fragments were allowed to hybridize with the oligonucleotides corresponding to the SNPs immobilized on glass slides, followed by the incorporation of different fluorescently labeled dideoxynucleotides. This allows fast and unequivocal discriminations between wild type and mutant genotypes with high dideoxynucleotide incorporation efficiency, sensitivity and specificity. The coexistence of both genotypes was also detected, which was undetected by DNA sequencing. Then experience on APEX was further extended to identify the SNPs present in C, P, S and X gene of HBV genome. Thirty common SNPs were genotyped in 33 HBV carriers. The optimized APEX conditions were used. DNA sequencing was also involved for method validation. Again, high signal-to-noise ratios, sensitivities and specificities were obtained on most SNPs. The ability to identify the co-existence of wild-type and mutant genotype in one SNP indicating that APEX is a reliable HBV SNPs genotyping platform. By prevalence study on the 33 HBV infected patients, the most
frequent SNPs in the HBV genome are present in the pre-C/BCP region. Secondly, another technology, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as an alternative tool to detect the 8 common SNPs present in pre-C/BCP region of HBV. By designing specific genotyping primers with known molecular masses, one dideoxynucleotide complementary to the SNPs could be extended unambiguously at the 3’ end of the primers by DNA polymerase. The primer extension products were subjected to MALDI-TOF MS for mass analysis. The genotypes of each SNP were differentiated according to the mass differences between the extended and non-extended primers. The capability of MALDI-TOF MS to differentiate intrinsic molecular mass differences of dideoxynucleotides and high signal-to-noise ratio allowed unequivocal SNPs genotyping. In this study, APEX and MALDI-TOF MS were developed as fast, routine and non-radioactive platforms for HBV SNP genotyping. These platforms enable large-scale and diagnostic analysis, which is a possible alternative genotyping method to DNA sequencing. The application of APEX and MALDI-TOF MS as simultaneous and high-throughput genotyping platforms for HBV SNPs genotyping may be beneficial to the development of treatment strategies for this expanding chronic hepatitis B patient population. These technologies may also be extended to other SNP-based applications.
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Tables ix
List of Figures x
List of Abbreviation xi

CHAPTER 1 Introduction 1

1.1 Hepatitis B and Hepatitis B Virus 1

1.1.1 Current Situation on Hepatitis B 1

1.1.2 General Background on Hepatitis B Virus 1

1.1.3 Transmission and Prevention 3

1.1.4 HBV Genomic Organization 5

1.1.4.1 C gene 5

1.1.4.2 P gene 7

1.1.4.3 S gene 8

1.1.4.4 X gene 9

1.1.5 HBV Replication 10

1.1.6 HBV and Hepatocarcinogenesis 12

1.2 Single Nucleotide Polymorphisms 13

1.2.1 Single Nucleotide Polymorphisms and Disease Development 13

1.2.2 Single Nucleotide Polymorphisms in HBV 15

1.3. Current Technologies for SNPs Detection 16
1.3.1 Hybridization-Based Genotyping 16
 1.3.1.1 DNA Microarray 16
 1.3.1.2 Real-Time Polymerase Chain Reaction (Real-Time PCR) 17

1.3.2 Enzyme-Based Genotyping 17
 1.3.2.1 Cleavage 17
 1.3.2.2 Ligation 17

1.4 Arrayed Primer Extension 17

1.5 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) 20

1.6 Aim of Study 20
 1.6.1 Detection of SNPs in HBV Genome by APEX 21
 1.6.2 Detection of SNPs in HBV Pre-C/BCP region by MALDI-TOF MS 22

CHAPTER 2 Materials and Methods 23

2.1 Detection of SNPs in HBV Genome by APEX 23
 2.1.1 Selection of Patients in the Chinese Population 23
 2.1.2 Genomic DNA Samples and Template Preparation 23
 2.1.3 DNA Sequencing 26
 2.1.4 Preparation of Oligonucleotides and Array Printing 26
 2.1.5 Template Preparation for APEX 30
 2.1.6 Arrayed Primer Extension (APEX) 31
 2.1.7 Image Recording and Analysis 32

2.2 Detection of SNPs in HBV Pre-C/BCP Region by MALDI-TOF MS 33
2.2.1 Sample Selection and Preparation 33
2.2.2 Genotyping Primers Extension Reaction 33
2.2.3 MALDI-TOF Mass Spectrometry 33

CHAPTER 3 Results 36
3.1 Detection of SNPs in HBV Genome by APEX 36
 3.1.1 Optimization of APEX Conditions 36
 3.1.2 SNPs genotyping by Optimized APEX Conditions 37
 3.1.3 HBV SNPs Detection 43
 3.1.4 Prevalence Study of HBV SNPs by APEX 48
 3.1.5 Detection of Coexistence of Wild-type and Mutant HBV by APEX 52

3.2 Detection of SNPs in HBV Pre-C/BCP Region by MALDI-TOF MS 54
 3.2.1 Acquisition of Mass Spectra 54

CHAPTER 4 Discussion 59
4.1 Detection of SNPs in HBV Genome by APEX 59
 4.1.1 Features of APEX 59
 4.1.2 Sensitivity and Specificity of APEX in Detecting SNPs in HBV Genome 60
 4.1.3 Prevalence Study of SNPs in HBV Genome and Significances 60
 4.1.3.1 Pre-C/BCP Region 60
 4.1.3.2 C gene 61
 4.1.3.3 S gene 62
4.1.3.4 P gene 62
4.1.3.5 X gene 63
4.1.4 Coexistence of wild-type and mutant in one SNP 63

4.2 Detection of SNPs in HBV Pre-C/BCP Region by MALDI-TOF MS 64
 4.2.1 Features of MALDI-TOF MS in SNPs Detection 64
 4.2.2 Comparison of APEX and MALDI-TOF MS for Detection of
 SNPs 65

CHAPTER 5 Future Prospective 67
 5.1 Background of Research 67
 5.2 Aim of Study 67
 5.3 Hepatitis B Virus X Protein Causes Hepatocellular Carcinoma 68
 5.4 Mutant HBV X Protein Modulates its Carcinogenic Properties 68
 5.5 Medical Treatments on HBV Carriers 69
 5.6 Anti-cancer Activities of Traditional Chinese Medicine Ginsenosides
 Rg3 and its Metabolite Rh2 69
 5.7 Previous Works Demonstrated the Anti-cancer Effects of Rg3 and Rh2 70
 5.8 Overall strategy 71
 5.9 Conclusion 72

Reference 74
List of Publication 82
Curriculum Vitae 83