The Chemistry of Organometallic Derivatives of Oligoacetylenic Silanes

WONG Chun Kin

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Dr. WONG Wai Yeung, Raymond

Hong Kong Baptist University

September 2002
Abstract

The molecular design, synthesis, characterization, structural studies and optical spectroscopy of some metal-containing oligo- and poly(alkynylsilanes) are discussed.

Chapter 1 contains a brief review on metal acetylide complexes and polymers with reference to their preparations, characterization as well as their applications in the materials industry.

Chapter 2 presents the synthesis and characterization of a series of new oligoacetylenic silanes containing $R_2\text{Si}(C≡\text{CH})_2$ units ($R = \text{Me}, \text{Ph}$). Novel silole-based and alkynylgermane ligand precursors were also prepared. Full characterization of these molecules was accomplished by FTIR, NMR ($^1\text{H}, ^{13}\text{C}, ^{29}\text{Si}$) and UV/Vis spectroscopies and FAB mass spectrometry. The single-crystal X-ray structure of $\text{HC}=\text{C}(p-$C$_6\text{H}_4)\text{C}=\text{CSi(Ph)}_2\text{C}=\text{C}(p-C_6\text{H}_4)\text{C}=\text{CSi(Ph)}_2\text{C}=\text{C}(p-C_6\text{H}_4)\text{C}=\text{CH}$ has been determined, showing that two silicon atoms and six acetylenic units constitute the backbone of the molecule.

Chapter 3 describes the synthesis and characterization of a range of Groups 8 and 9 metal complexes bearing alkynylsilane ligands. In the first place, some novel mononuclear acetylide complexes $\text{trans-}[\text{M(dpmm)}_2\text{Cl}(\text{C≡CRC≡CH})] (\text{M} = \text{Ru, Os}; R = \text{SiMe}_2$–$\text{O}$–$\text{SiMe}_2$, SiPh_2) were prepared and structurally characterized and their electrochemical properties were investigated by cyclic voltammetry. Attempts were then made to synthesize a series of homometallic and heterometallic carbonyl clusters incorporating $R_2\text{Si}(C≡\text{CH})_2$ and $R_4\text{Si}_2(C≡\text{CH})_2$ units ($R = \text{Me}, \text{Ph}$). In most cases, the structures of these new compounds were unequivocally identified by X-ray crystallography.
A full account of the synthesis, characterization, electrochemistry and optical spectroscopy of some platinum(II)-containing oligo- and poly(alkynylsilanes) is presented in Chapter 4. Soluble and thermally stable platinum(II) poly(alkynylsilanes) trans-[−Pt(PBu₃)₂C≡CRC≡C−]ₙ (R = SiPh₂, (p-C₆H₄)C≡C-Si(Ph)₂C≡C(p-C₆H₄)) were successfully synthesized in good yields by CuI-catalyzed condensation polymerization of trans-[PtCl₂(PBu₃)₂] with HC≡CRC≡CH. The regiochemical structure of these polymers was studied by NMR (¹H, ¹³C, ²⁹Si and ³¹P) spectroscopy. We report the optical absorption and photoluminescence spectra of such metal-based organosilicon polymers and compare the data with their mono-, di- and triplatinum(II) acetylide model complexes: trans-[Pt(Ph)(PEt₃)₂C≡CRC≡CH], trans-[Pt(Ph)(PEt₃)₂C≡CRC≡CPh(PEt₃)₂] and trans-[Pt(Ph)(PEt₃)₂C≡CRC≡C-Pt(PBu₃)₂C≡CRC≡CPh(PEt₃)₂] (R = SiPh₂, (p-C₆H₄)C≡CSi(Ph)₂C≡C(p-C₆H₄)).

Our studies indicate that such organometallic poly(alkynylsilanes) shows a strong triplet emission with a very high efficiency of intersystem crossing from the S₁ singlet excited state to the T₁ triplet excited state. The dependence of intersystem crossing and the spatial extent of singlet and triplet excitons as a function of the central spacer group is discussed in polymetallaynes possessing SiPh₂, p-C₆H₄ and Pt(PR₃)₂ (R = Et, Bu) linkers.

Chapters 5 and 6 present the concluding remarks and the experimental details of the work presented in Chapters 2–4.
Contents

Declaration i
Abstract ii
Acknowledgments iv
Table of Contents vi
List of Tables xi
List of Figures xv
List of Schemes xxii
List of Abbreviations and Symbols xxiii

Chapter 1 Introduction 1
1.1 Research Background on Metal Acetylide Complexes 1
1.2 The Chemistry of Oligoacetylenic Compounds Containing Main Group Elements 2
1.2.1 General Overview of Oligomeric and Polymeric Alkynyl Compounds 2
1.2.2 Alkynylsilane Derivatives 7
1.3 Alkyne-Transition Metal Chemistry 9
1.3.1 Metal-Containing Poly-yynes 11
1.3.2 Metal σ-acetylide Complexes 14
1.4 Methods of Characterization 17
1.4.1 Infra-red Spectroscopy 17
1.4.2 Electronic Spectroscopy 20
1.4.3 Nuclear Magnetic Resonance Spectroscopy 24
1.4.4 Mass Spectrometry 25
1.4.5 X-ray Crystallography 27
1.5 Properties of Metal Acetylide Complexes and Polymers 28
 1.5.1 Electrochemical Behaviour (Cyclic Voltammetry) 28
 1.5.2 Thermal Properties 30
 1.5.3 Photophysical Properties and Photoconductivity 34
1.6 Scope of Thesis 35
1.7 References 37

Chapter 2 Synthesis and Characterization of Ligand Precursors 44
 2.1 Introduction 44
 2.1.1 Synthetic Methodologies 46
 2.2 Synthesis of Diethynylsilanes 48
 2.3 Synthesis of Oligoacetylenic Silanes 49
 2.4 Synthesis of Bis(trimethylsilyl)ethynyldisilole and Germane Compounds 50
 2.5 Spectroscopic Characterization 52
 2.6 Optical Properties 65
 2.7 X-ray Structural Studies 68
 2.8 Conclusion 73
 2.9 References 74
Chapter 3

The Chemistry of Groups 8 and 9 Carbonyl Clusters Containing Alkynylsilane Ligands

3.1 Introduction

3.1.1 Mononuclear Alkyne Complexes

3.1.2 Dinuclear Alkyne Complexes

3.1.3 Trinuclear Alkyne Complexes

3.2 Synthesis of Metal Complex Precursors

3.2.1 Synthesis of Mononuclear Ruthenium Precursor

3.2.2 Synthesis of Mononuclear Osmium Precursor

3.2.3 Synthesis of Trinuclear Osmium Carbonyl Precursor

3.3 Synthesis of New Metal Complexes

3.3.1 Synthesis of Mono-ruthenium Complexes

3.3.2 Synthesis of Mono-osmium Complexes

3.3.3 Synthesis of Dicobalt Carbonyl Complexes

3.3.4 Synthesis of Triruthenium Carbonyl Complexes

3.3.5 Synthesis of Triosmium Carbonyl Complexes

3.3.6 Synthesis of Mixed Metal Complexes

3.3.6.1 Synthesis of Osmium-Cobalt Carbonyl Complexes

3.3.6.2 Synthesis of Osmium-Ruthenium Carbonyl Complexes

3.4 Spectroscopic Characterization

3.5 Optical Spectroscopy

3.6 Electrochemical Properties

3.7 X-ray Crystallographic Studies

79 80 81 82 83 84 85 86 87 87 88 89 90 90 91 106 107 108
Chapter 4

The Chemistry of Platinum(II) Complexes and Polymers Containing Alkynylsilane Ligands

4.1 Introduction

4.2 Synthesis of Mononuclear Platinum Precursor

4.3 Synthesis of Novel Platinum Compounds

4.3.1 Synthesis of Mononuclear Platinum Starting Materials

4.3.2 Synthesis of Mono- and Diplatinum Complexes

4.3.3 Synthesis of Triplatinum Complexes

4.3.4 Synthesis of Platinum Poly-yne

4.3.5 Oxidative Coupling Reaction

4.3.6 Synthesis of Silole-containing Platinum Complex and Polymer

4.3.7 Synthesis of Germane-containing Poly-yne

4.4 Spectroscopic Characterization

4.5 X-ray Structural Studies

4.6 Theoretical Calculations

4.7 Properties of Platinum(II) Complexes and Polymers

4.7.1 Thermal Properties

4.7.2 Electrochemical Properties

4.7.3 Optical Absorption and Photoluminescence Spectroscopy

4.7.4 Photocurrent Measurement
Chapter 5 Concluding Remarks and Future Work 208

Chapter 6 Experimental Details 210
 6.1 General Procedures 210
 6.2 Materials 213
 6.3 Experimental Details for Chapter 2 214
 6.4 Experimental Details for Chapter 3 220
 6.5 Experimental Details for Chapter 4 230
 6.6 References 241

Curriculum Vitae