Glutamate Receptors in an Animal Model of Parkinson’s Disease

TSE Yiu Chung

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

October 1999

Hong Kong Baptist University
Abstract

Basal ganglia are a group of subcortical nuclei in the forebrain that are associated with movement of the body. Degeneration of dopaminergic neurons in the basal ganglia, i.e., the neurons in the substantia nigra pars compacta, is the cause of one of the major dysfunction of the basal ganglia, namely Parkinson's disease. In order to develop better treatments for Parkinson's disease, neurotransmitter glutamate and its receptors are implicated as the targets. There is a complicated family of glutamate receptors described so far. The major objectives of the present thesis were to investigate the precise cellular localization of nine glutamate receptor subunits and subtypes (N-methyl-D-aspartate receptors: NMDAR1 and NMDAR2B; α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors: GluR1-4; kainate receptors: GluR5/6/7; and metabotropic glutamate receptors: mGluR1α and mGluR2/3) in the neostriatum and the substantia nigra, the two major areas of the basal ganglia that are known to be affected by the neuropathology of Parkinson's disease. Using an animal model of Parkinson's disease, the 6-hydroxydopamine-leisoned rats, the changes of the glutamate receptors during the course of the motor disorder were then investigated.

In the first part of study, double immunocytochemistry and immunofluorescence was employed to reveal the precise cellular localization of immunoreactivity for glutamate receptor subunits in subpopulations of neurons in the rat substantia nigra. In the substantia nigra pars compacta, around 90% of the tyrosine hydroxylase-immunoreactive neurons are found to express immunoreactivity for GluR1, GluR2, GluR2/3, NMDAR1 and GluR5/6/7. Only about 60% of tyrosine hydroxylase-positive neurons were found to express NMDAR2B immunoreactivity. In the substantia nigra pars reticulata, subpopulations of neurons that displayed strong immunoreactivity for parvalbumin and GABA transaminase were found to express immunoreactivity for GluR1, GluR2, GluR2/3, GluR4, NMDAR1, NMDAR2B and GluR5/6/7. These results indicate that the compacta neurons are the major neuronal elements that express most of the ionotropic glutamate receptor subunits in the region. In addition, subpopulations of neurons in the reticulata that express strong immunoreactivity for parvalbumin and GABA transaminase are the major neurons that express most of the ionotropic glutamate receptors.

In the second part of study, immunocytochemistry was employed to localize the precise cellular distribution of immunoreactivity for glutamate receptor subunits and subtypes in the neostriatum. Immunoreactivity for GluR2, GluR2/3, NMDAR1, NMDAR2B and GluR5/6/7, as well as GluR1 was primarily found in neurons that resembled the medium-sized spiny neurons in the neostriatum. Immunoreactivity for GluR1 and GluR4 was primarily found in interneurons. Immunoreactivity for mGluR1α and mGluR2/3 was mainly found in the neuropilar elements of the neostriatum.

Based on the data obtained above, immunofluorescence was employed to investigate the changes of glutamate receptor immunoreactivity in the substantia nigra of the unilaterally 6-hydroxydopamine-leisoned rats. Lesioned rats were perfuse-fixed at different time periods (2 weeks, 3 months and 1 year of lesion). In the lesioned rats after 2 weeks, 3 months and 1 year of lesion, immunoreactivity for GluR1, GluR2, GluR2/3, NMDAR1, NMDAR2B, GluR5/6/7 was found to be depleted in the substantia nigra pars compacta. In addition, immunoreactivity for GluR1, GluR2, GluR2/3, GluR4, NMDAR1, NMDAR2B, GluR5/6/7, mGluR1α and mGluR2/3, which was indicated by the immunofluorescence
intensity, was found to be unchanged between the non-lesioned and lesioned substantia nigra pars reticulata. These results confirm that the compacta neurons are the major neuronal populations in the rat substantia nigra that display most of the ionotropic glutamate receptors as immunoreactivity for these glutamate receptors are depleted by the loss of dopaminergic neurons in the compacta. Immunoreactivity for the glutamate receptors in the reticulata may not be modified after the lesion.

In addition, based on the above data, immunofluorescence was also employed to study the changes of glutamate receptor immunoreactivity in the neostriatum after the lesion. Similarly, lesioned rats were perfuse-fixed after the three different time periods (2 weeks, 3 months and 1 year of lesion). Immunoreactivity for GluR1, GluR2, GluR2/3 was found to decrease in terms of immunofluorescence intensity in the neostriatum of 2 week-lesioned rats. Immunoreactivity for GluR1 was also found to decrease in the neostriatum of 3 month-lesioned rats. The present study demonstrates that GluR1, GluR2 and GluR2/3 but not the other glutamate receptors are down regulated in the region during the initial stage of lesion. In later stages of lesion, the receptor immunoreactivity is found to be similar between the lesioned and non-lesioned neostriatum. These results indicate that there is a differential effect of the dopamine denervation to different glutamate receptors in the neostriatum and the changes in receptor immunoreactivity are time dependent.

Last but not least, in order to correlate the aftermath changes of glutamate receptors after the lesion at the cellular level to those at the subcellular level, GluR1 immunoreactivity was revealed in the neostriatum. In the three age groups of lesioned animals, the percentage of GluR1-immunoreactive dendritic spines was found to decrease in the lesioned neostriatum. The present qualitative observations indicate that there may be subcellular changes occur in the neuronal elements that are likely to be spiny neurons after the dopamine denervation.

In summary, results of the present thesis as a whole indicate that there is differential localization of glutamate receptors in the neostriatum and in the substantia nigra. After the 6-hydroxydopamine-lesioned, there are cellular and subcellular changes of glutamate receptors in the regions that may have implication in future therapeutic applications in treatments of Parkinson’s disease.
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Tables xviii
List of Figures xix
List of Abbreviation xxiv

Chapter 1: General Introduction 1

1.1 The Basal ganglia 1
 1.1.1 Nuclei of the basal ganglia 1
 1.1.2 Circuitry of the basal ganglia 2
 1.1.2.1 Input to the basal ganglia 2
 1.1.2.2 Major pathways through the basal ganglia 2
 1.1.2.3 Synaptic outputs from the basal ganglia 3
 1.1.2.4 Feedback pathway 3
 1.1.2.5 Neurotransmitter in major pathways of the basal ganglia 4
 1.1.3 The neostriatum 4
 1.1.3.1 Internal circuitry of the neostriatum 4
 1.1.3.2 Neuronal elements of the neostriatum 5
 1.1.3.3 Medium-sized spiny neurons 5
 1.1.3.4 Interneurons in the neostriatum 6
 1.1.3.4.1 Cholinergic interneurons 6
 1.1.3.4.2 Interneurons that contain Somatostatin, neuropeptide Y, or nitric oxide synthetase (NOS) 7
 1.1.3.4.3 Interneurons that contain parvalbumin (PV) interneurons 7
 1.1.3.5 Microcircuitry of the neostriatum 7
 1.1.3.5.1 Nigral feedback pathway 8
 1.1.3.5.2 Medium-sized spiny neurons interconnection 8
 1.1.3.5.3 Connection between spiny neurons and striatal interneurons 8
 1.1.4 The substantia nigra 9
 1.1.4.1 Neuronal elements of the substantia nigra 9
 1.1.4.2 Output pathways of the substantia nigra 9
 1.1.4.3 Synaptic inputs to the substantia nigra 10

1.2 Function of the Basal ganglia 11
1.3 Glutamate and its receptors in the basal ganglia

1.3.1 Glutamate receptors
 1.3.1.1 NMDA receptors
 1.3.1.2 AMPA receptors
 1.3.1.3 Kainate receptors

1.3.2 Localization of glutamate receptor in the basal ganglia
 1.3.2.1 Previous finding by in situ hybridization and ligand binding
 1.3.2.2 Finding glutamate receptors in the basal ganglia by immunocytochemistry

1.3.3 Glutamate receptor-mediated excitotoxicity

1.4 Parkinson’s disease and glutamate receptors

1.4.1 Parkinson’s disease

1.4.2 Treatment of Parkinson’s disease

1.4.3 Changes of glutamate levels in Parkinson’s disease

1.4.4 Animal models of Parkinson’s disease

1.4.5 Glutamate receptors change in Parkinson's disease and 6-OHDA lesioned rat animal model.
 1.4.5.1 Changes of glutamate receptors in 6-OHDA lesioned rat – animal model of Parkinson’s disease
 1.4.5.1.1 Findings by ligand binding studies
 1.4.5.1.2 Finding by in situ hybridization
 1.4.5.1.3 Finding by immunocytochemistry
 1.4.5.2 Changes of glutamate receptors in postmortem brain of patients with Parkinson’s disease
 1.4.5.2.1 Findings by ligand binding studies
 1.4.5.2.2 Finding by in situ hybridization

1.5 Objectives

Figure 1.1 Circuitry of the basal ganglia
Figure 1.2 Circuitry of the basal ganglia

Chapter 2: Materials and Methods

2.1 Overall sequence of procedures:

2.2 Animals

2.3 6-hydroxydopamine lesion
 2.3.1 Rat rotation tests

2.4 Tissue preparation
 2.4.1 Perfusion and fixation
2.4.2 Vibratome sectioning
2.4.3 Pretreatment of sections
 2.4.3.1 Freeze-thaw procedure
 2.4.3.2 Sodium borohydride treatment

2.5 Immunocytochemistry
 2.5.1 Avidin-biotin-peroxidase method
 2.5.2 Immunofluorescence
 2.5.3 Immunocytochemistry combined with immunofluorescence
 2.5.4 Double immunofluorescence
 2.5.5 Control for immunocytochemistry
 2.5.5.1 Control for avidin-biotin-peroxidase method
 2.5.5.2 Control for immunofluorescence
 2.5.5.3 Control for immunocytochemistry combined with
 immunofluorescence
 2.5.5.4 Control for double immunofluorescence

2.6 Preparation for microscopy
 2.6.1 Light microscopy
 2.6.2 Preparation for fluorescence microscopy or laser scan
 confocal microscopy
 2.6.3 Preparation for electron microscopy
 2.6.3.1 Treatment with osmium tetroxide
 2.6.3.2 Dehydration and embedding in resin
 2.6.3.3 Ultrathin sections for electron microscopy

2.7 Semi-quantitative analysis of intensity of immunofluorescence
 2.7.1 Fluorescence microscope and laser scan confocal
 microscope analysis
 2.7.1.1 Confocal microscope analysis for the 6-OHDA lesion rat
 substantia nigra
 2.7.1.2 Confocal microscope analysis for the 6-OHDA lesion rat
 neostriatum
 2.7.2 Electron microscopic analysis

Chapter 3: Localization and characterization of glutamate
receptor subunits/subtypes in the rat substantia nigra

3.1 Introduction
 3.1.1 Objectives
3.2 Materials and Methods

3.2.1 Animals

3.2.2 Tissue preparation

3.2.2.1 Perfusion and fixation

3.2.2.2 Vibratome sectioning

3.2.3 Immunocytochemistry combined with immunofluorescence

3.2.4 Double immunofluorescence

3.2.5 Control for immunocytochemistry

3.2.5.1 Control for immunocytochemistry combined with immunofluorescence

3.2.5.2 Control for double immunofluorescence

3.2.6 Preparation for light and fluorescence microscopy and laser scan confocal microscopy

3.3 Results

3.3.1 Glutamate receptors in the dopaminergic neurons of the substantia nigra

3.3.1.1 GluR1 immunoreactivity

3.3.1.2 GluR2 immunoreactivity

3.3.1.3 GluR2/3 immunoreactivity

3.3.1.4 GluR4 immunoreactivity

3.3.1.5 NMDAR1 immunoreactivity

3.3.1.6 NMDAR2B immunoreactivity

3.3.1.7 GluR5/6/7 immunoreactivity

3.3.2 Glutamate receptors in the GABAergic neurons of the substantia nigra

3.3.2.1 Double labeling of TH and PV

3.3.2.2 Double labeling of GluR1 and PV

3.3.2.3 Double labeling of GluR2/3 and PV

3.3.2.4 Double labeling of GluR4 and PV

3.3.2.5 Double labeling of NMDAR1 and PV

3.3.2.6 Double labeling of NMDAR2B and PV

3.3.2.7 Double labeling of TH and GABA\(\tau\)

3.3.2.8 Double labeling of GluR1 and GABA\(\tau\)

3.3.2.9 Double labeling of GluR2/3 and GABA\(\tau\)

3.3.2.10 Double labeling of GluR4 and GABA\(\tau\)

3.3.2.11 Double labeling of NMDAR1 and GABA\(\tau\)

3.3.2.12 Double labeling of NMDAR2B and GABA\(\tau\)
3.3.3 AMPA type glutamate receptor subunits in the neurons of the substantia nigra pars reticulata

3.3.3.1 Double labeling of GluR1 and GluR2 58
3.3.3.2 Double labeling of GluR2 and GluR4 58

3.4 Discussion 58

3.4.1 Stiochiometry of ionotropic glutamate receptors in dopaminergic neurons of the compacta 59
3.4.1.1 AMPA channels 59
3.4.1.2 NMDA channels 59
3.4.1.3 Kainate channel 61

3.4.2 Stiochiometry of ionotropic glutamate receptors in dopaminergic neurons of the compacta 62
3.4.2.1 AMPA channels 62
3.4.2.2 NMDA channels 63

3.4.3 Expression of ionotrope receptors in subpopulations of reticulata neurons and implications of neurological diseases 64

3.6 Conclusion 66

Figure 3.1 Light and fluorescent micrographs of the rat substantia nigra double immunostained to reveal tyrosine hydroxylase (TH) immunoreactivity together with immunoreactivity for AMPA-type glutamate receptor subunits GluR1 and GluR2 67

Figure 3.2 Light and fluorescent micrographs of the rat substantia nigra double immunostained to reveal tyrosine hydroxylase (TH) immunoreactivity together with immunoreactivity for GluR2/3 and GluR4 receptors 69

Figure 3.3 Light and fluorescent micrographs of the rat substantia nigra double immunostained to reveal tyrosine hydroxylase (TH) immunoreactivity together with immunoreactivity for NMDAR1 and NMDAR2B receptor subunits 71

Figure 3.4 Light and fluorescent micrographs of the rat substantia nigra double immunostained to reveal tyrosine hydroxylase (TH) immunoreactivity together with immunoreactivity for GluR5/6/7 73

Figure 3.5 Color micrographs of the rat substantia nigra double immunostained to reveal immunoreactivity for tyrosine hydroxylase (TH) and parvalbumin (PV), and immunoreactivity for GluR1 and PV 75

Figure 3.6 Color fluorescent micrographs of the rat substantia nigra double labeled to reveal immunoreactivity for PV immunoreactivity together with immunoreactivity for GluR2/3 and GluR4 receptor subunits 77
Chapter 4: Localization of glutamate receptors in the neostriatum

4.1 Introduction

4.1.1 Objectives

4.2 Materials and Methods

4.2.1 Animals

4.2.2 Tissue preparation
 4.2.2.1 Perfusion and fixation
 4.2.2.2 Vibratome sectioning

4.2.3 Immunocytochemistry (avidin-biotin-peroxidase method)

4.2.4 Control for immunocytochemistry (avidin-biotin-peroxidase method)

4.2.5 Preparation for light microscopy

4.3 Results

4.3.1 GluR1 immunoreactivity

4.3.2 GluR2 immunoreactivity

4.3.3 GluR2/3 immunoreactivity

4.3.4 GluR4 immunoreactivity

4.3.5 NMDAR1 immunoreactivity

4.3.6 NMDAR2B immunoreactivity

4.3.7 GluR5/6/7 immunoreactivity

4.3.8 mGluR1α immunoreactivity

4.3.9 mGluR2/3 immunoreactivity
4.4 Discussion

4.4.1 Differential localization of glutamate receptor subunits/subtypes in distinct neuronal elements of the neostriatum 96

4.4.2 Functional implications of glutamate receptor localization in the microcircuity of the neostriatum 97

4.4.2.1 AMPA-type receptor 97

4.4.2.2 NMDA-type receptor 98

4.4.2.3 Kainate receptor 99

4.4.2.4 Metabotropic glutamate receptors 100

4.5 Conclusion 100

Figure 4.1 Light micrographs of the rat neostriatum to reveal immunoreactivity for AMPA-type receptor subunits. 101

Figure 4.2 Light micrographs show immunoreactivity for subunits/subtypes of NMDA-type, kainate and metabotropic receptor in the neostriatum 103

Chapter 5: Changes of immunoreactivity for glutamate receptors in the substantia nigra in 6-hydroxydopamine-lesioned rats 105

5.1 Introduction 105

5.1.1 Objectives 107

5.2 Materials and methods 108

5.2.1 Animals 108

5.2.2 6-hydroxydopamine lesion 108

5.2.2.1 Rat rotation tests 108

5.2.3 Tissue preparation 109

5.2.3.1 Perfusion and fixation 109

5.2.3.2 Vibratome sectioning 109

5.2.4 Immunofluorescence 109

5.2.5 Control for immunofluorescence 110

5.2.6 Preparation for laser scan confocal microscope 110

5.2.7 Semi-quantitative analysis of intensity of immunofluorescence analysis 110

5.3 Results 111

5.3.1 Changes of TH immunoreactivity in lesioned rats 111

5.3.2 Changes of glutamate receptors in rats after 2 weeks of lesion 111
5.3.2.1 AMPA type receptor
5.3.2.2 NMDA type receptor
5.3.2.3 Kainate receptor
5.3.2.4 Metabotropic type receptor

5.3.3 Changes of glutamate receptors in rats after 3 months of lesion
5.3.3.1 AMPA type receptor
5.3.3.2 NMDA type receptor
5.3.3.3 Kainate receptor
5.3.3.4 Metabotropic type receptor

5.3.4 Changes of glutamate receptors in rats after 1 year of lesion
5.3.4.1 AMPA type receptor
5.3.4.2 NMDA receptor
5.3.4.3 Kainate receptor
5.3.4.4 Metabotropic type receptor

5.4 Discussion
5.4.1 Effects on glutamate receptors in the SNc after 6-OHDA lesion
5.4.2 Effects on glutamate receptors in the SNr after 6-OHDA lesion
5.4.3 Functional implications

5.5 Conclusion

Table 5.1 Relative intensity of glutamate receptor subunits/subtypes in the SNr of 2 weeks 6-OHDA-lesioned rats

Figure 5.1 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for tyrosine hydroxylase (TH) and GluR1

Figure 5.2 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for GluR2

Figure 5.3 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for GluR2/3

Figure 5.4 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for GluR4

Figure 5.5 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for NMDAR1

Figure 5.6 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for NMDAR2B

Figure 5.7 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat substantia nigra (SN) to reveal immunoreactivity for GluR5/6/7
Chapter 6: Changes of immunoreactivity for glutamate receptors in the neostriatum in 6-hyrdoxydopamine-lesioned rats

6.1 Introduction
 6.1.1 Objectives

6.2 Materials and methods
 6.2.1 Animals
6.2.2 6-hydroxydopamine lesion
 6.2.2.1 Rat rotation tests
6.2.3 Tissue preparation
 6.2.3.1 Perfusion and fixation
 6.2.3.2 Vibratome sectioning
6.2.4 Immunofluorescence
6.2.5 Control for immunofluorescence
6.2.6 Preparation for laser scan confocal microscopy
6.2.7 Laser scan confocal microscope analysis

6.3 Results

6.3.1 Changes of TH immunoreactivity in lesioned rats
6.3.2 Changes of glutamate receptors in rats after 2 weeks of lesion
 6.3.2.1 AMPA receptor
 6.3.2.2 NMDA receptor
 6.3.2.3 Kainate receptor
 6.3.2.4 Metabotropic type receptor
6.3.3 Changes of glutamate receptors in rats after 3 months of lesion
 6.3.3.1 AMPA receptor
 6.3.3.2 NMDA receptor
 6.3.3.3 Kainate receptor
 6.3.3.4 Metabotropic type receptor
6.3.4 Changes of glutamate receptors in rats after 1 year of lesion
 6.3.4.1 AMPA receptor
 6.3.4.2 NMDA receptor
 6.3.4.3 Kainate receptor
 6.3.4.4 Metabotropic type receptor

6.4 Discussion

6.4.1 Changes of glutamate receptors – comparison with previous reports
6.4.2 Changes of receptor immunoreactivity in the striatal neuronal elements
6.4.3 Changes of AMPA receptor during the course of lesion
6.4.4 Change of metabotropic glutamate receptors in the Str

6.5 Conclusion
Table 6.1 Relative intensity of glutamate receptor subunits/subtypes in the Str of 2 weeks 6-OHDA-lesioned rats

Figure 6.1 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for tyrosine hydroxylase (TH) and GluR1

Figure 6.2 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR2

Figure 6.3 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR2/3

Figure 6.4 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR4

Figure 6.5 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for NMDAR1

Figure 6.6 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for NMDAR2B

Figure 6.7 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR5/6/7

Figure 6.8 Fluorescent micrographs of the 2 weeks 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for mGluR1α and mGluR2/3

Table 6.2 Relative intensity of glutamate receptor subunits/subtypes in the Str of 3 months 6-OHDA-lesioned rats

Figure 6.9 Fluorescent micrographs of the 3 months 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR1 and GluR2

Figure 6.10 Fluorescent micrographs of the 3 months 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR2/3 and GluR4

Figure 6.11 Fluorescent micrographs of the 3 months 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for NMDAR1 and NMDAR2B

Figure 6.12 Fluorescent micrographs of the 3 months 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR5/6/7

Figure 6.13 Fluorescent micrographs of the 3 months 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for mGluR1α and mGluR2/3

Table 6.3 Relative intensity of glutamate receptor subunits/subtypes in the Str of 1 year 6-OHDA-lesioned rats

Figure 6.14 Fluorescent micrographs of the 1 year 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR1 and GluR2

Figure 6.15 Fluorescent micrographs of the 1 year 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for GluR2/3 and GluR4

Figure 6.16 Fluorescent micrographs of the 1 year 6-OHDA-lesioned rat neostriatum (Str) to reveal immunoreactivity for NMDAR1 and NMDAR2B
Chapter 7: Electron microscopic analysis of GluR1 immunoreactivity in the neostriatum of 6-hydroxydopamine-lesioned rat

7.1 Introduction

7.1.1 Objective

7.2 Materials and methods

7.2.1 Animals

7.2.2 Six-hydroxydopamine lesion
 7.2.2.1 Rat rotation tests

7.2.3 Tissue preparation
 7.2.3.1 Perfusion and fixation
 7.2.3.2 Vibratome sectioning

7.2.4 Pretreatment of sections
 7.2.4.1 Freeze-thaw procedure
 7.2.4.2 Sodium borohydride treatment

7.2.5 Immunocytochemistry (avidin-biotin-peroxidase method)

7.2.6 Control for avidin-biotin-peroxidase method

7.2.7 Preparation for electron microscope
 7.2.7.1 Treatment with osmium tetroxide
 7.2.7.2 Dehydration and embedding in resin
 7.2.7.3 Ultrathin sections for electron microscope

7.2.8 Electron microscope analysis

7.3 Results

7.3.1 Electron microscopic analysis
 7.3.1.1 Immunoreactivity for GluR1 in non-lesioned Str

7.3.2 Immunoreactivity for GluR1 in lesioned Str
 7.3.2.1 Analysis of GluR1-immunoreactive structures

7.4 Discussion

7.4.1 Subcellular distribution of GluR1-immunoreactive profiles in the lesioned Str
7.4.2 Subcellular events of 6-OHDA lesion

Table 7.1 Table to show the percentage of different GluR1-immunoreactive profiles in the Str of non-lesioned and lesioned sides in 2 weeks, 3 months and 1 year lesioned 6-OHDA lesioned rats

Figure 7.1 Electron micrographs of the non-lesioned side neostriatum (Str) of 6-OHDA-lesioned rat immunostained to reveal immunoreactivity for GluR1 subunit of AMPA receptor

Figure 7.2 Electron micrographs of the lesioned side neostriatum (Str) of 6-OHDA-lesioned rat immunostained to reveal immunoreactivity for GluR1 subunit of AMPA receptor

Chapter 8: Glutamate receptors in 6-OHDA lesioned rats: localization and functional implications

8.1 Glutamate receptors: differential localization of subunits determines functions

8.2 Changes of glutamate receptors in the 6-OHDA lesion model and implications in clinical applications

8.3 Further questions raised by the findings of the present thesis and further studies

Reference list

Appendix I

Appendix II

Appendix III

List of Publications

Curriculum Vitae