On Two Tests for Multivariate Normality

WONG Hoi-Lam

A thesis submitted in partial fulfillment of the requirements of the Postgraduate Studies Committee for the degree of Master of Philosophy

June 1993

Hong Kong Baptist College
On Two Tests for Multivariate Normality

by

WONG Hoi-Lam

Abstract

Assessing multivariate normality has long been an important topic in statistical inference. Many tests have been proposed. However, there is no widely accepted method. This thesis proposes two new tests for multivariate normality based on the density estimation, the sample entropy, the number-theoretic method and the projection pursuit technique. We extend the Vasicek (1976) test for univariate normality which is based on the sample entropy to the multivariate case. The problem of testing multivariate normality can be transformed into a problem of testing univariate marginal normality by the projection pursuit method. Since the projection pursuit method requires a set of projection directions with good uniformity, we develop an efficient method based on the number-theoretic method and the stochastic representation in distribution theory to generate the required set which is called an NT-net on U_d. We then propose two tests for multivariate normality considering a Kolmogorov-Smirnov type and a Cramer-von Mises type statistic. Their percentage points of the new statistics are obtained by the Monte Carlo simulation. The results of the power simulation show that the new tests are useful in practice. Two examples including the famous iris setosa data set illustrate our approach.
Contents

1 Introduction .. 1

2 Some Contributions to the Test for Multivariate Normality .. 6
 2.1 Direct Approach ... 6
 2.2 Multivariate Generalization Approach ... 8

3 Two New Tests for Multivariate Normality ... 13
 3.1 Introduction .. 13
 3.2 The Two Test Statistics ... 15
 3.3 Percentage Points Simulation ... 19
 3.4 Algorithms and The Power Study .. 21

4 Two Practical Examples .. 23
 4.1 The Study of the Body Measurements .. 24
 4.2 The *Iris Setosa* Data .. 27

5 An Efficient Method for Generating an NT-net on the Unit Sphere .. 30
 5.1 Introduction .. 30
 5.2 Preliminaries ... 31
 5.2.1 The Number-Theoretic Method .. 31
 5.2.2 The Box-Muller Transformation Method .. 33
 5.2.3 The Spherical Coordinate Transformation Method .. 35
 5.3 An Efficient Method ... 37
 5.4 Discussions .. 41

6 Conclusions and Further Developments .. 44

References ... 45

Appendix 1 The Data of The Body Measurements .. 51

Appendix 2 The *Iris Setosa* Data .. 54

Appendix 3 Subroutines for Calculating the Two New Statistics ... 55

Appendix 4 Subroutines for Generating an NT-net on U_d (d is even) .. 57
Appendix 5 Subroutines for Generating an NT-net on $U_d (d \text{ is odd})$..........................59
Appendix 6 Subroutines for Generating the Glp set...61
VITA..62