ABSTRACT

Lung cancer has a high incidence rate globally and the leading cause of cancer related mortalities. In 2018, lung cancer has been estimated to cause 1.76 million deaths worldwide (18.33% of total cancer mortalities). In Hong Kong lung cancer has been a leading cause of cancer related deaths, and in 2016 caused 3780 deaths (26.6% of total cancer mortalities). Non-small cell lung cancer (NSCLC) is the major (~85%) lung cancer type, and five-year survival rate for lung cancer has estimated to be 18%. Thus, an efficient lung cancer treatment with lesser adverse effects is need of the hour. In this connection, active targeting of overexpressed receptors at lung tumor site with a ligand functionalized drug delivery system is the current approach, and pulmonary administration could augment chemotherapeutic effect of the drug through localized administration, minimizing the off-target effects by retention of the drug in lungs.

Quercetin (QR), a natural flavonoid present in edible fruits and vegetables possess anticancer activity i.e. inhibits lung cancer growth. However, the application of QR in lung cancer therapy has been restricted by various factors i.e. low water solubility (2.15 µg/ml at room temperature), low bioavailability and rapid plasma clearance. To overcome the issues, we have formulated various QR-loaded liposomes surface functionalized with transferrin receptor (TFR) targeting peptides i.e. T7 (HAIYPRH) and T12 (THRPPMWSPVWP) in two research projects with active targeting ability, prolonged circulation time, and sustained release behavior for lung cancer specific QR delivery.

In first research project, T7 targeted liposomes with different peptide densities i.e. 0.5%, 1% and 2% and QR-lip (non-targeted) were formulated. TFRs are over expressed (~100 folds) in various cancers including lung cancer and have low expression in most normal cells. T7 surface-functionalized liposomes (2% T7-QR-lip) demonstrated significantly enhanced cytotoxicity (~3-folds), cellular-uptake, S-phase cell cycle arrest and apoptosis in A549 cells. However, in MRC-5 (normal-lung fibroblast) cells no significant difference was observed after treatment with T7-
QR-lip and QR-lip in cytotoxicity and cellular uptake studies. In tumor spheroid penetration and inhibition studies, T7 targeted liposomes showed deeper penetration and pronounced inhibition. *In vivo* biodistribution study via pulmonary administration of T7-DiR-lip has demonstrated liposomes accumulation in the lungs and sustained-release behavior upto 96h. Further, T7-QR-lip significantly enhanced anticancer activity of QR and life-span of orthotopic lung-tumor bearing mice (**p < 0.01, compared with control) via pulmonary administration.

In second research project, T12 surface-functionalized liposomes with 0.5%, 1% and 2% T12 peptide densities and QR-lip have been formulated with ~95 % encapsulation efficiency. *In vitro* drug release study showed sustained release of QR from T12-QR-lip and QR-lip. *In vitro* experiments showed A549 cells treatment with 2% T12-QR-lip enhanced cellular-uptake, *in vitro* cytotoxicity, induced apoptosis and S-phase cell cycle arrest due to TFR mediated endocytosis. No significant variation has been observed in cellular-uptake and cytotoxicity after MRC-5 cells were treated with T12-QR-lip and QR-lip. Further, T12-Cou6-lip showed significantly deeper penetration i.e. 120 µm in 3D lung tumor-spheroids. Biodistribution study showed retention of T12-DiR-lip and DiR-lip mainly in the lungs upto 96h after pulmonary administration, as compared to free DiR. Pulmonary administration of T12-QR-lip showed the strongest tumor growth inhibition and survival time of orthotopic lung tumor implanted mice without any systemic toxicity as compared to QR-lip and free-QR.

In summary, *in vitro* and *in vivo* results of the two research projects suggest that surface functionalization of the liposomes with TFR targeting peptides i.e. T7 and T12 is a promising approach for lung cancer therapy through active targeting and receptor mediated endocytosis of QR at lung tumor site. Moreover, T7 and T12 functionalized liposomes provides a potential drug delivery system for a range of anticancer drugs to enhance their therapeutic efficacy by localized i.e. pulmonary administration and targeted delivery.
TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... xvi

LIST OF FIGURES ... xvii

LIST OF ABBREVIATIONS .. xxvii

CHAPTER 1 - Introduction: Background and Literature Review ... 1

1.1. Lung Cancer and present status of its therapy .. 1

1.2. Quercetin and its utilization in lung cancer treatment ... 2

1.3. Pulmonary administration of chemotherapeutic agents for lung cancer therapy 5

1.4. Drug delivery systems for cancer therapy .. 7

1.4.1. Lipid based drug delivery systems .. 7

1.4.1.1. Liposomes ... 7

1.4.1.2. Solid-Lipid Nanoparticles .. 7

1.4.2. Non-lipid based drug delivery systems .. 8

1.4.2.1. Niosomes .. 8

1.4.2.2. Polymeric Nanoparticles .. 8
1.4.2.3. Hydrogels .. 10
1.4.2.4. Dendrimers ... 11
1.4.2.5. Quantum Dots .. 11
1.4.2.6. Gold Nanoparticles ... 11
1.4.2.7. Mesoporous Silica Nanoparticles ... 12
1.5. Liposomes .. 12
1.5.1. Classification of liposomes ... 12
1.5.2. Stimuli responsive liposomes for enhanced delivery of chemotherapeutic agents at requisite site ... 15
1.5.2.1. Temperature responsive liposomes .. 15
1.5.2.2. pH responsive liposomes ... 15
1.5.2.3. Magnetic-field responsive liposomes ... 16
1.5.2.4. Ultrasound responsive liposomes .. 16
1.5.2.5. Other stimuli-responsive liposomes ... 16
1.5.2.6. Liposomes responsive to multiple stimuli 17
1.5.3. Dual functionalized liposomes sensitive to stimuli and functionalized with targeting ligands for enhanced drug delivery .. 17
1.6. Strategies for targeting of chemotherapeutic agents at requisite site in cancer therapy using smart functionalized liposomes .. 18
1.6.1. Passive targeting or Enhanced Permeability and Retention (EPR) effect .. 19
1.6.2. Active targeting with surface engineered liposomes, functionalized with targeting ligands ... 19

1.6.2.1. Targeting over-expressed receptors on surface of cancer cells 22

1.6.2.2. Targeting over-expressed receptors in cytoplasm, nucleus and desired organelle ... 24

1.6.2.3. Targeting tumor microenvironments 25

1.7. Targeting ligands for surface functionalization of liposomes in cancer therapy ... 27

1.7.1. Surface Functionalization of Liposomes with Peptides 28

1.7.2. Surface Functionalization of Liposomes with Antibodies 29

1.7.3. Surface Functionalization of Liposomes with Aptamers 30

1.7.4. Surface Functionalization of Liposomes with Small Molecules 31

1.7.5. Surface Functionalization of Liposomes with Dual Targeting Ligands 32

1.8. Transferrin receptor targeting peptides, as a ligand for lung cancer therapy 32

1.9. Objectives of the Study ... 36

CHAPTER 2 - Formulation of T7 peptide surface functionalized liposomes loaded with quercetin and their characterization ... 37

2.1. Introduction .. 37

2.2. Materials .. 38

2.3. Methods ... 39

2.3.1. Synthesis of DSPE-PEG(2000)-MAL-T7 ... 39
2.3.2. Formulation of T7 targeted liposomes .. 40

2.3.3. Characterization of liposomes: particle size, polydispersity index, encapsulation efficiency and stability study .. 41

2.3.4. In vitro drug release study .. 42

2.4. Results and Discussion ... 42

2.4.1. Synthesis of DSPE-PEG(2000)-MAL-T7 ... 42

2.4.2. Formulation of T7 targeted liposomes ... 43

2.4.3. Characterization of liposomes: particle size, polydispersity index, encapsulation efficiency and stability study ... 44

2.4.4. In vitro drug release study .. 48

2.5. Conclusion .. 49

CHAPTER 3 - In vitro study of T7 peptide surface functionalized liposomes containing quercetin on 2D lung cancer cells and 3D lung tumor spheroids 51

3.1. Introduction .. 51

3.2. Materials .. 53

3.3. Methods ... 53

3.3.1. In vitro cytotoxicity study of T7-targeted liposomes by MTT assay 53

3.3.2. In vitro cytotoxicity investigation of T7-targeted liposomes by apoptosis study .. 54

3.3.3. In vitro cytotoxicity study of T7-targeted liposomes by cell cycle analysis study .. 55
3.3.4. Cellular uptake study (*in vitro* target-specificity) of T7 targeted liposomes ...56

3.3.4.1. Cellular uptake of liposomes (qualitative study) by confocal laser-scanning microscope (CLSM): ..56

3.3.4.2. Cellular uptake of liposomes (quantitative study) by flow cytometry: 57

3.3.5. Tumor spheroid penetration and inhibition study ...57

3.3.5.1. *In vitro* development of 3D lung tumor spheroids:57

3.3.5.2. 3D lung tumor-spheroids penetration capability study of T7-targeted liposomes ...58

3.3.5.3. *In vitro* tumor growth inhibition study in 3D lung tumor spheroids....58

3.4. Results and Discussion ..59

3.4.1. *In vitro* cytotoxicity study of T7-targeted liposomes by MTT assay59

3.4.2. *In vitro* cytotoxicity investigation of T7-targeted liposomes by apoptosis study ...62

3.4.3. *In vitro* cytotoxicity study of T7-targeted liposomes by cell cycle analysis study ...65

3.4.4. Cellular uptake study (*in vitro* target-specificity) of T7 targeted liposomes ..67

3.4.4.1. Cellular uptake of liposomes (qualitative study) by confocal laser-scanning microscope (CLSM) ...68

3.4.4.2. Cellular uptake of liposomes (quantitative study) by flow cytometry 70
3.4.5. Tumor spheroid penetration and inhibition study..72

3.4.5.1. *In vitro* development of 3D lung tumor-spheroids:72

3.4.5.2. *In vitro* penetration study of coumarin-6 liposomes in 3D lung tumor spheroids ...74

3.4.5.3. *In vitro* tumor growth inhibition study in 3D lung tumor spheroids....75

3.5. Conclusion..78

CHAPTER 4 - In vivo therapeutic efficacy study of T7 peptide surface functionalized liposomes containing quercetin in orthotopic lung cancer mouse models........79

4.1. Introduction ...79

4.2. Materials, Cells and Animals ..80

4.2.1. Materials ..80

4.2.2. Cells and Animals...80

4.3. Methods ..81

4.3.1. Establishment of an A549-Luc orthotopic lung cancer mice model81

4.3.2. Bio-distribution of T7-targeted liposomes in vivo through pulmonary delivery ..81

4.3.3. Therapeutic efficacy of T7-targeted liposomes through pulmonary delivery in mice bearing A549-Luc orthotropic implantation...82

4.4. Results and Discussion ...83

4.4.1. Establishment of an A549-Luc orthotopic lung cancer mice model83
4.4.2. Bio-distribution of T7-targeted liposomes in vivo through pulmonary delivery ... 85

4.4.3. Therapeutic efficacy of T7 targeted liposomes through pulmonary delivery in mice bearing A549-Luc orthotropic implantation ... 89

4.5. Conclusion ... 94

CHAPTER 5 - Formulation of T12 peptide surface functionalized liposomes loaded with quercetin and their characterization ... 95

5.1. Introduction .. 95

5.2. Materials ... 96

5.3. Methods ... 97

5.3.1. Synthesis of DSPE-PEG(2000)-MAL-T12 ... 97

5.3.2. Formulation of T12 targeted liposomes ... 97

5.3.3. Characterization of liposomes: particle size, polydispersity index, encapsulation efficiency and stability study 98

5.3.4. In vitro drug release study .. 99

5.4. Results and Discussion .. 99

5.4.2. Formulation of T12 targeted liposomes .. 101

5.4.3. Characterization of liposomes: particle size, polydispersity-index, zeta potential, encapsulation efficiency and stability study .. 101

5.4.4. In vitro drug-release study .. 107

xi
5.5. Conclusion.. 108

CHAPTER 6 - In vitro study of T12 peptide surface functionalized liposomes containing quercetin on 2D lung cancer cells and 3D lung tumor spheroids........ 109

6.1. Introduction .. 109

6.2. Materials .. 111

6.3. Methods ... 111

 6.3.1. In vitro cytotoxicity study of T12-targeted liposomes through MTT assay
 ... 111

 6.3.2. In vitro cytotoxicity investigation of T12-targeted liposomes through apoptosis study
 ... 112

 6.3.3. In vitro cytotoxicity study of T12-targeted liposomes through cell cycle
 analysis study .. 113

 6.3.4. Cellular uptake study (target specificity) of T12 targeted liposomes....... 113

 6.3.4.1. Cellular uptake (qualitative) study by confocal microscope: 114

 6.3.4.2. Cellular uptake (quantitative) study by flow cytometry: 114

 6.3.5. Tumor spheroid penetration study ... 115

 6.3.5.1. Development of 3D lung-tumor spheroids: .. 115

 6.3.5.2. 3D lung-tumor spheroid penetration study of T12-targeted liposomes
 ... 115

6.4. Results and Discussion .. 116
6.4.1. *In vitro* cytotoxicity study of T12-targeted liposomes through MTT assay ... 116

6.4.2. *In vitro* cytotoxicity investigation of T12-targeted liposomes through apoptosis study .. 119

6.4.3. *In vitro* cytotoxicity study of T12-targeted liposomes through cell cycle analysis study .. 121

6.4.4. Cellular uptake study (target specificity) of T12 targeted liposomes 123

6.4.4.1. Cellular uptake (qualitative) study by confocal microscope 124

6.4.4.2. Cellular uptake (quantitative) study by flow cytometry 125

6.4.5. Tumor spheroid penetration study .. 128

6.4.5.1. Development of 3D lung-tumor spheroids: 128

6.4.5.2. 3D lung-tumor spheroid penetration study of T12-targeted liposomes .. 129

6.5. Conclusion .. 131

CHAPTER 7 - *In vivo* therapeutic efficacy study of T12 peptide surface functionalized liposomes containing quercetin in orthotopic lung cancer mouse models .. 132

7.1. Introduction .. 132

7.2. Materials, Cells and Animals .. 133

7.2.1. Materials ... 133

7.2.2. Cells and Animals .. 133
7.3. Methods ... 134

7.3.1. Establishment of an orthotopic lung cancer mice model................................. 134

7.3.2. Bio-distribution Study of T12 targeted liposomes in vivo through pulmonary administration .. 134

7.3.3. Therapeutic efficacy study of T12 targeted liposomes through pulmonary administration in mice with orthotropic lung tumor implantation......................... 135

7.4. Results and Discussion ... 136

In vivo therapeutic efficacy of T12 targeted liposomes has been studied in orthotopic lung tumor mice model through biodistribution and therapeutic efficacy studies. .. 136

7.4.1. Establishment of an orthotopic lung cancer mice model................................. 136

7.4.2. Bio-distribution Study of T12 targeted liposomes in vivo through pulmonary administration .. 137

7.4.3. Therapeutic efficacy study of T12 targeted liposomes through pulmonary administration in mice with orthotropic lung tumor implantation......................... 141

7.5. Conclusion ... 146

CHAPTER 8 - Conclusions and Future Prospective ... 147

8.1. Conclusions ... 147

8.2. Future Prospective .. 151

REFERENCES .. 154

PUBLICATIONS .. 176