Abstract

This thesis is concerned with a particular numerical approach for solving the fractional partial differential equations (PDEs). In the last two decades, it has been observed that many practical systems are more accurately described by fractional differential equations (FDEs) rather than the traditional differential equation approaches. Consequently, it has become an important research area to study the theoretical and numerical aspects of various types of FDEs. This thesis will explore high order numerical methods for solving FDEs numerically. More precisely, spectral methods which exhibit exponential order of accuracy will be investigated. The method consists of expanding the solution with proper global basis functions and imposing collocation conditions on the Gauss quadrature points.

In this work, Hermite and modified rational functions are employed to serve as basis functions for solutions that decay exponentially and algebraically, respectively. The main emphasis of this thesis is to propose the spectral collocation method for FDEs posed in unbounded domains. Components of the differentiation matrix involving fractional Laplacian are derived which can then be computed recursively using the properties of confluent hypergeometric function or hypergeometric function.

The first part of the thesis introduces preliminaries useful for other parts of the thesis. Review of the relevant definitions and properties of special functions such as Hermite functions, Bessel functions, hypergeometric functions, Gegenbauer polynomials, mapped Jacobi polynomials, modified rational functions are presented. Fractional Sobolev space is introduced and some lemmas on interpolation approximation in the fractional Sobolev space are also included.

In the second part of the thesis, we present the spectral collocation method based on Hermite functions. Two bases are used, namely, the over-scaled Hermite function and generalized Hermite function, which are orthogonal functions on the whole line with appropriate weight functions. We will show that the fractional Laplacian of these two kinds of Hermite functions can be represented by confluent hypergeometric function. Behaviors of the condition numbers for the resulting spectral differentiation matrices with respect to the number of expansion terms are investigated.
Moreover, approximation in two-dimensional space using the tensorized bases, application to multi-term problems and use of scaling to match different decay rate are also considered. Convergence analysis for generalized Hermite function are derived and numerical errors for two bases are analyzed.

The third part of the thesis deals with the spectral collocation method based on modified rational functions. We first give a brief introduction for computation of the fractional Laplacian using modified rational functions, which is represented by hypergeometric functions. Then the differentiation matrix involving the fractional Laplace operator is given. Convergence analysis for modified Chebyshev rational functions and modified Legendre rational functions are derived and numerical experiments are carried out.

Keywords: Fractional PDEs, Hermite polynomials/functions, Gegenbauer polynomials, mapped Jacobi functions, modified rational function, unbounded domain, spectral collocation methods.
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures vii
List of Symbols xi
List of Abbreviation xii

Chapter 1 Introduction 1
1.1 Fractional differential equations 1
1.2 Numerical methods . 3
1.3 Problem description . 5
1.4 Plan of the thesis . 9

Chapter 2 Preliminaries 10
2.1 Confluent hypergeometric functions 10
2.2 An integral involving parabolic cylinder function 11
2.3 Hermite polynomials/functions . 11
2.4 Bessel functions . 12
2.5 Hypergeometric function . 14
2.6 Gegenbauer polynomials . 15
2.7 Modified rational functions ... 16
2.8 Fractional Sobolev space ... 18
2.9 Useful lemmas for approximation error 19
2.10 Strang’s first lemma ... 23

Chapter 3 Hermite spectral collocation methods 25
3.1 Over-scaled Hermite function \{\overline{H}_n(x)\}_n 25
 3.1.1 1D case ... 26
 3.1.2 2D case ... 34
 3.1.3 The use of the scaling factors 37
 3.1.4 Applications to multi-term fractional PDEs 38
3.2 Generalized Hermite function \{\overline{H}_n(x)\}_n 39
 3.2.1 The one dimensional case ... 39
 3.2.2 2D case ... 40
3.3 Application to fractional differential equations 42
3.4 Convergence analysis ... 44
3.5 Numerical examples ... 46
 3.5.1 The fractional Laplace equation 46
 3.5.2 A linear fractional PDE ... 48
 3.5.3 A two-dimensional example 50
 3.5.4 A multi-term fractional model 50
 3.5.5 A nonlinear example .. 51
 3.5.6 An eigenvalue problem .. 51
3.6 Concluding remarks ... 53

Chapter 4 Modified rational spectral collocation methods 55
4.1 Computing fractional Laplacian with simple functions 56
4.2 Computing with modified rational functions 58
4.3 Application to fractional differential equations 60
4.4 Differentiation matrix of the spectral collocation method with La-
 grange bases .. 61
4.5 Convergence analysis ... 62
4.6 Numerical examples .. 64
4.6.1 With exponential decay right hand side 65
4.6.2 With algebraic decay right hand side 67
4.6.3 A multi-term fractional model 67
4.6.4 A nonlinear example 70
4.6.5 An eigenvalue problem 70
4.7 Concluding remarks .. 72

Chapter 5 Summary and future work 73

Curriculum Vitae ... 84