ABSTRACT

It is well established that cyclin and cyclin-dependent kinase (CDK) form complex that plays a central role in driving cell cycle progression. The fundamental functions of CDK and cyclin are well conserved across eukaryotes. However, gene families encoding the two type of proteins are significantly expanded in multicellular organisms compared with single-cell species. Despite intensive studies on CDK and its associated cyclin in cultured cell lines, especially in cancer cell lines, the partnership between individual CDKs and cyclins remains elusive especially in vivo.

Here I present our preliminary results on establishing the molecular function of a well-conserved cyclin L encoded by cyl-1 in C. elegans. Human cyclin L was demonstrated to form a complex with both CDK11 and CDK12, but its association with the latter remains controversial. Despite a possible function in both transcription and pre-mRNA splicing as suggested by in vitro studies or in yeast, the in vivo function of cyclin L has yet been established in any species. To study cyl-1’s function in vivo, we generated multiple strains each expressing a chromosomally integrated single-copy transgenes consisting of CYL-1::GFP flanked by its native regulatory sequences using miniMos technique. The transgene demonstrates ubiquitous expression in nuclei across developmental stages and cell types with few exceptions, including maturing oocytes, in which gene activity is known to be shut down, consistent with its function in transcription and splicing. Co-immunoprecipitation followed by mass spectrometry reveals that CYL-1 interacts with both CDK-11 and CDK-12 along with some other uncharacterized factors. Functional validation of these interactions is underway.
Table of Contents

Declaration i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Tables vii
List of Figures ix

Chapter 1. Introduction 1

1.1 C. elegans as a model organism 1

1.2 Overview of cyclins and cyclin-dependent kinases in human 2

1.2.1 Cyclin L 3

1.2.2 CDK11 4

1.2.3 CDK12 and CDK13 4

1.2.4 Physical interaction between cyclin L and CDKs 5

1.3 Prediction of interaction of cyclin L and CDKs in C. elegans 8

Chapter 2. Materials and Methods 9

2.1 Transgenesis with MiniMos 9

2.1.1 Worm strains and maintenance 10

2.1.2 Plasmid construct 10

2.1.3 Microinjection and screening 15

2.1.4 Genotyping 21

2.2 Expression profiling 22
3.3 CYL-1-interacting partners 52

3.4 Functional characterization of CYL-1-interacting partners 54

3.4.1 Embryonic lethality from RNAi 54

3.4.2 Lineal expression of PHA-4::GFP 56

Chapter 4. Discussion and future study 61

Bibliography 65

Curriculum Vitae 70