Abstract

Metazoan development is a complex and tightly controlled process that not only requires precise cell fate differentiation, but also demands accurate timing of cell division and precise cell migration. Genetic regulation of cell cycle length throughout metazoans embryogenesis is largely unknown, mainly due to the technical hurdle in quantifying cell division timing during development. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study the genetic regulation of division timing because of its invariant cell lineage and widespread division asynchronies between sister cells. A combination of in toto imaging and automated cell lineaging coupled with high throughput RNAi allows genetic screening of genes involved in regulation of Asynchrony of Division between Sister cells (ADS) or cousin cells. One of the most pronounced asynchronies between cousin cells during C. elegans embryogenesis is a significant elongation of division timing in two endoderm progenitor cells, Ea and Ep (E2), versus their cousins MSa and MSp (MS2) that mainly develop into mesoderm organs. Out of a total of 822 essential and conserved genes that were perturbed by RNAi in our previous genetic screening, 53 genes are found to produce significantly reduction specifically in the E2 cell cycle length (p<0.01). Surprisingly, nearly 70% of the 53 genes are involved in mRNA production or its regulation, indicating a differential requirement of transcription for division timing between E2 and MS2. Reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. Furthermore, our systematic data on cell division timings upon perturbation of a large cohort of essential genes provide a valuable source for inferring the function of uncharacterized gene. For example, phenotypical clustering based on cell division timings suggested that an essential gene, gad-1, is likely to be involved in general transcription, which is in agreement with its further functional assays. In summary, a combining of the published data with our own demonstrates that E2 specific cell cycle elongation requires robust and earlier zygotic genome activation (ZGA) during C. elegans embryogenesis. The cell-specific elongation might be important for coordinate fate differentiation, division timing and cell migration of E2 to ensure proper intestine development.
Table of contents

DECLARATION ...i
Abstract ... ii
Acknowledgement ... iii
Table of contents ... iv
List of Tables .. vii
List of Figures .. viii
List of Abbreviations ... x

Chapter 1 Introduction ... 1

1.1. Caenorhabditis elegans embryogenesis... 1
1.2. Regulation of division asymmetry and asynchrony ... 3
1.3. Maternal-to-zygotic transition in gene regulation .. 7
1.4. Roles of zygotic genome activation in controlling intestine fate specification 9
1.5. Roles of zygotic genome activation in controlling division timing .. 12
1.6. Cell migration and gastrulation ... 16
1.7. Study objective and approach .. 18

Chapter 2 Results ... 20

2.1. Screening for genes required for division asynchrony during C. elegans embryogenesis using RNAi followed by automated lineaging ... 20
2.2. Division timing of intestine progenitor during C. elegans embryogenesis 24

2.2.1. Perturbation of multiple genes in C. elegans embryos specifically reduced cell cycle length in Ea and Ep .. 24
2.2.2. mRNA production pathway may play a major role in E2 cell cycle length elongation 33
2.2.3. Robust zygotic transcription activation may be initiated at around E2 stage 35
2.2.4. Cell cycle regulation of E2 may or may not be coupled with intestine fate specification ... 40

2.2.5. wee-1.1 functioned downstream of general transcription machinery regulating E2 cell cycle length .. 43

2.2.6. E2 division timing elongation might facilitate gastrulation 45

2.3. gad-1 gene characterization .. 52

2.3.1. gad-1 encoded a unknown protein that regulates E2 division timing 52

2.3.2. Deletion knockout of gad-1 led to larval arrest .. 53

2.3.3. Rescue of gad-1 deletion by GAD-1::GFP fusion .. 56

2.3.4. Nuclear expression of GAD-1 enriched on transcriptionally active chromosomes. 57

2.3.5. Zygotic expression of GAD-1 started around 28-cell stage 64

Chapter 3 Conclusion and Discussion ... 66

3.1. Developmental regulation of intestinal progenitor cells in C. elegans 66

3.1.1. Robust zygotic genome activation is required for proper E2 cell cycle timing 66

3.1.2. Proper cell division timing of E2 facilitate gastrulation 72

3.2. The possible role of gad-1 in transcription .. 73

Chapter 4 Materials and Methods .. 78

4.1. Worm strains and maintenance .. 78

4.1.1. Maintenance of worms ... 78

4.1.2. Worm strains .. 78

4.1.3. Generation of lineaging strain with wee-1.1 homozygous deletion 79

4.1.4. Generation of deletion rescue strain of gad-1 by GAD-1::GFP 80

4.1.5. Generation of lineaging strain with gad-1 homozygous deletion rescued by

GAD-1::GFP ... 81

4.1.6. Generation of gad-1 homozygous deletion strain 82
4.2. RNAi and microinjection

4.3. Microscopy, automated lineaging and gene expression profiling
 4.3.1. Time-lapse imaging for automated cell lineaging
 4.3.2. Single-shot imaging
 4.3.3. Z-series imaging and maximum 3D projection of fluorescent protein co-localization
 4.3.4. Automated cell lineaging and gene expression profiling

4.4. Statistical analysis of temporal and spatial data
 4.4.1. Quantification of cell cycle length
 4.4.2. Hierarchical clustering of E2 cell cycle length
 4.4.3. GO analysis
 4.4.4. Data analysis of C. elegans blastomere-specific RNA-seq data
 4.4.5. Data analysis on cell migration

4.5. Genetic analysis
 4.5.1. Analysis of genetic interaction of wee-1.1
 4.5.2. Embryonic zygotic expression detection of gad-1

4.6. Phenotyping and genotyping
 4.6.1. Brood size, hatching ratio and survival ratio
 4.6.2. Single-worm PCR
 4.6.3. Genotyping of homozygous deletion

Appendices

Appendix 1. Data analysis on cell migration (Supplementary)

References

CURRICULUM VITAE