ABSTRACT

Processing of Chinese medicinal materials (CMMs) is a unique technique for preparing decoction pieces. According to the traditional Chinese medicine (TCM) theory, processing can reduce the toxicity, alter the indications and enhance the efficacy of the herbs. Pinelliae Rhizoma (PR), the dried tuber of *Pinellia ternata* (Thunb.) Breit., is a traditional Chinese medicinal herb. Although toxic, it is commonly used for treating cancer, cough and phlegm. TCM doctors usually prescribe raw PR to manage cancer and Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine (PRZA), the product of raw PR processed with ginger juice and alumen, for treating cough and phlegm. To guarantee the quality of a processed herb, standardized processing procedure is critical. However, the current manufacturing protocol of PRZA varies greatly among different places in China. In addition, the mechanisms involved in raw PR’s toxicities, the toxicity-reducing effect of processing, and the anticancer effects of raw PR are still not fully understood. In this study, we standardized the manufacturing procedure for PRZA, and explored the mechanisms involved in raw PR-induced cardiotoxicity, the toxicity-reducing effect of processing, and the anti-liver cancer effects of raw PR.

Our results showed that the standardized manufacturing procedure for PRZA is as follows: soak raw PR in water until the center of the cut surface is devoid of a dry core, boil for 6 h after adding 12.5 kg alumen and 25 L freshly squeezed ginger juice for each 100 kg of raw PR, then take out and dry. The toxicity and
bioactivity assays demonstrated that PRZA produced using our optimized protocol could reduce the cardiotoxicity, and enhance the antitussive and expectorant efficacies of raw PR, supporting the traditional processing theory; and raw PR exhibited more potent anti-liver cancer efficacy than PRZA, supporting the common clinical practice. Moreover, as expected raw PR and PRZA showed different chemical profiles. These results suggest that our optimized protocol for producing PRZA is appropriate. The optimized protocol, shown to be applicable for PRZA industrial production, will be included in the upcoming “National Standards for Processing CMMs” (全國中藥炮製規範) to update the 1998 edition of this China national standard handbook.

Using a comprehensive metabolomics approach, we explored the underlying mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. Results showed that inhibition of mTOR signaling and activation of the TGF-β pathway may contribute to raw PR-induced cardiotoxicity, and free radical scavenging may be responsible for the toxicity-reducing effect of processing.

We have also investigated the anti-liver cancer mode and mechanism of action of raw PR in vitro and in vivo. The in vitro results showed that a 75% ethanolic extract of raw PR inhibited proliferation and induced apoptosis in liver cancer cells. Mechanistic studies showed that raw PR extract not only activated the ERK and p38 MAPKs, but also inhibited the constitutive activation of PI3K/AKT/mTOR signaling in liver cancer cells. Raw PR extract increased
reactive oxygen species (ROS) production, which is associated with the inhibition of cell proliferation and induction of apoptosis. Importantly, inhibition of ROS generation diminished, and inhibition of PI3K/AKT/mTOR signaling enhanced, raw PR extract-afforded anti-proliferative and apoptotic effects. Moreover, raw PR extract suppressed SMMC-7721 tumor growth in a xenografted mouse model. These findings suggest that raw PR extract exerts anti-liver cancer activities \textit{in vitro} and \textit{in vivo}, and ROS-mediated MAPK activation as well as PI3K/AKT/mTOR signaling inhibition are the potential mechanisms of action.

In summary, in this study we achieved the follows: 1) standardized the manufacturing procedure for PRZA; 2) found that processing with ginger juice and alumen reduced the toxicity of raw PR, and discovered the potential mechanisms for raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing; 3) demonstrated the anti-liver cancer activities and some underlying mechanisms of action of raw PR. Our findings provide a standardized manufacturing procedure for PRZA, help in the understanding of the mechanisms involved in raw PR-caused cardiotoxicity and the toxicity-reducing effect of processing, and provide a pharmacological basis for the clinical application of raw PR in liver cancer treatment. The outcome of this study should guarantee the safety and efficacy of PRZA, and provide scientific justifications for the traditional processing theory of PR.
TABLE OF CONTENTS

DECLARATION ...I
ABSTRACT .. II
ACKNOWLEDGEMENTS .. V
TABLE OF CONTENTS .. VI
LIST OF TABLES ... X
LIST OF FIGURES .. XI
LIST OF ABBREVIATIONS ... XIV

CHAPTER 1 Introduction ..1
 1.1 Pinelliae Rhizoma (PR) ..1
 1.1.1 Chemical studies ..3
 1.1.2 Toxicological studies ..11
 1.1.3 Pharmacological studies ...14
 1.2 Processing of PR ...17
 1.2.1 History of PR processing ...18
 1.2.2 Current processing methods of PR ..25
 1.3 Studies of the manufacturing procedures of PRZA26
 1.4 Comparative studies on the chemical components of raw PR and PRZA ...26
 1.5 Comparative studies on the toxicities of raw PR and PRZA27
 1.6 Comparative studies on the bioactivities of raw PR and PRZA27
 1.7 Objectives of this study ..29

CHAPTER 2 Standardization of the manufacturing procedure for PRZA...30
 2.1 Abstract ..30
 2.2 Introduction ..32
 2.3 Materials and methods ..33
 2.3.1 Chemicals and reagents ...33
 2.3.2 Sample preparations ..33
 2.3.3 Determination of 6-gingerol in fresh ginger ...35
 2.3.4 Determination of 6-gingerol in ginger juice ..36
2.3.5 Optimization of the manufacturing procedure for PRZA37
2.3.6 Validation of the optimized manufacturing procedure of PRZA39
2.3.7 Comparison of the toxicities of raw PR and PRZA39
2.3.8 Comparisons of the bioactivities of raw PR and PRZA40
2.3.9 Comparison of the chemical profiles of raw PR and PRZA43
2.3.10 Statistical analysis ...43
2.4 Results ..45
 2.4.1 The content of 6-gingerol in fresh ginger45
 2.4.2 The content of 6-gingerol in ginger juice46
 2.4.3 Optimization of the manufacturing procedure for PRZA52
 2.4.4 Processing reduced the toxicity of raw PR................................57
 2.4.5 PRZA showed less potent cytotoxicity than raw PR in HepG2 cells...63
 2.4.6 Processing enhanced the antitussive effect of raw PR65
 2.4.7 Processing enhanced the expectorant effect of raw PR67
 2.4.8 Processing altered the chemical profile of raw PR70
2.5 Discussion and conclusion ..75

CHAPTER 3 Exploring the mechanisms for raw PR-induced cardiotoxicity
and the toxicity-reducing effect of processing by metabolomics77
 3.1 Abstract ..77
 3.2 Introduction ..78
 3.3 Materials and methods ..80
 3.3.1 Chemicals and reagents ..80
 3.3.2 Herbal sample preparations ...80
 3.3.3 Animals and treatments ..80
 3.3.4 Animal sample preparations ...83
 3.3.5 LC-Q-TOF-MS analyses ...83
 3.3.6 Sequence analysis ...84
 3.3.7 LC-MS data processing ...84
 3.3.8 Pathway and network predication by the ingenuity pathway analysis (IPA) ...85
 3.3.9 Western blot analyses ...86
 3.3.10 Statistical analysis ...86

VII
3.4 Results .. 87
 3.4.1 Repeatability and stability of the LC-Q-TOF-MS method 87
 3.4.2 Identification of differential metabolites .. 87
 3.4.3 Metabolic pathway and network function analyses with IPA 92
 3.4.4 Verification of the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing ... 96
3.5 Discussion and conclusion ... 102

CHAPTER 4 Anti-liver cancer action of raw PR ... 108
 4.1 Abstract .. 108
 4.2 Introduction .. 110
 4.3 Materials and methods ... 113
 4.3.1 Chemicals and reagents .. 113
 4.3.2 Preparation of raw PR extract ... 115
 4.3.3 Cell culture ... 115
 4.3.4 Cell viability assay ... 115
 4.3.5 Apoptosis assay .. 116
 4.3.6 Immunofluorescent staining .. 116
 4.3.7 Western blot analyses .. 117
 4.3.8 Measurement of cellular ROS levels .. 118
 4.3.9 Nude mice xenografted model .. 118
 4.3.10 Statistical analysis .. 119
 4.4 Results ... 120
 4.4.1 Raw PR extract inhibited liver cancer cells proliferation 120
 4.4.2 Raw PR extract induced apoptosis in liver cancer cells 122
 4.4.3 Raw PR extract increased ROS production .. 125
 4.4.4 Raw PR extract activated MAPK signaling 127
 4.4.5 NAC diminished raw PR extract-afforded anti-proliferative and apoptotic effects in liver cancer cells .. 132
 4.4.6 Raw PR extract inhibited PI3K/AKT/mTOR signaling 134
 4.4.7 MK2206 enhanced raw PR extract-afforded anti-proliferative and apoptotic effects in liver cancer cells .. 139
4.4.8 Raw PR extract exhibited anti-tumor activity in SMMC-7721 xenografted nude mouse model...141
4.5 Discussion and conclusion ...143

CHAPTER 5 General discussion, conclusion and future plan145
5.1 General discussion and conclusion ...145
5.2 Future plans ..148

REFERENCES...154
CURRICULUM VITAE..180