ABSTRACT

The incidence of colon cancer in Hong Kong and worldwide is on a rising trend, while its metastatic development is the leading cause of cancer-related deaths. Understanding the molecular mechanisms of how tumors progress and metastasize to secondary sites, at both biological and genetic levels, could enable us to identify potential molecular targets in drug development. In the present study, we explored how manipulation of signaling pathways by targeting calpains and S100A4 could facilitate the development of anti-tumor and anti-metastatic drugs.

With respect to the targeting on calpains, it was discovered that total Astragalus saponins (AST) and cryptotanshinone (CPT) are effective anti-cancer agents that elicit the endoplasmic reticulum (ER) stress response. They act by upregulating the expression of glucose-regulated protein (GRP) 78, leading to the initiation of apoptosis when the ER recovery process begins to fail. In particular, CPT caused rapid and sustained increase in cytosolic calcium in colon cancer cells that was accompanied by early GRP78 overexpression. The increase in cytosolic calcium was blocked by pre-treatment of BAPTA-AM through depletion of the ER calcium store. In consistent with these, we also confirmed that CPT significantly increased calpain activity, which could be blocked by calcium chelator or calpain inhibitors. Furthermore, a dynamic interaction between GRP78 and calpain under ER stress was unveiled during AST or CPT exposure. The degree of
association was increased following prolonged ER stress, and suppressed either as the ER recovery process failed or with the presence of calpain inhibitors. Besides, inhibition of calpain activity suppressed NF-κB activation (a consequence of ER stress) and substantially enhanced the effects of CPT to promote apoptosis. More importantly, it was confirmed that the effects of calpain inhibitors to sensitize colon cancer cells to ER stress-associated apoptosis are p53-dependent. The anti-tumorigenetic effects of CPT were further demonstrated in vivo in xenografted nude mice by targeting calpains and in combination with calpain inhibitors.

The study investigating drug targeting on S100A4 in both in vitro and in vivo models had shown that the pharmacological store-operated calcium channel blocker would suppress S100A4-mediated migration by weakening extracellular S100A4-mediated calcium responses. The effects on S100A4-induced metastasis formation were confirmed in vivo with reduced splenic tumor volume and decreased number of liver metastases. These results have provided new insights to correlate between S100A4 and calcium signaling, making an important step forward in characterizing the dependence of calcium homeostasis in the process of metastasis, providing a novel strategy for S100A4-mediated metastasis.

In summary, this thesis has explored the anti-cancer mechanisms of novel medicinal compounds via targeting calpains or S100A4 in the treatment of colon cancer, which could facilitate future establishment of effective
medicinal compounds in the treatment of metastatic colon cancers with known molecular targets.
# TABLE OF CONTENT

DECLARATION .................................................................................................................. II
ABSTRACT ....................................................................................................................... III
ACKNOWLEDGEMENTS ............................................................................................... VI
TABLE OF CONTENT .................................................................................................. VII
LIST OF FIGURES ........................................................................................................ XII
LIST OF ABBREVIATIONS .............................................................................................. XIV
CHAPTER 1 ..................................................................................................................... 1
INTRODUCTION ............................................................................................................. 1

A. OVERVIEW OF COLON CANCER ................................................................. 2
1. Colon cancer epidemiology ...................................................................................... 2
   1.1 Etiology ............................................................................................................... 3
   1.2 Staging ............................................................................................................... 4
   1.3 Symptoms and Diagnosis .................................................................................... 5
   1.4 Treatment .......................................................................................................... 6
2. Pathogenesis ............................................................................................................. 7
   2.1 Apoptosis and cancer ......................................................................................... 10
   2.2 Endoplasmic Reticulum (ER) stress and cancer .............................................. 11
   2.3 Unfolded Protein Response (UPR) .................................................................... 12
   2.4 Glucose-regulated proteins (GRPs) ................................................................. 15
   2.5 Calpains ............................................................................................................ 17

B. THE DEVELOPMENT OF METASTATIC COLON CANCER ............. 18
1. The colonic crypt ................................................................. 18
2. Steps of the adenoma-carcinoma ........................................... 21
3. Formation of metastasis ......................................................... 22
4. S100A4 .................................................................................. 25
   4.1 Protein structure of S100A4 .............................................. 26
5. Ca$^{2+}$ signaling ....................................................................... 29
6. Store-operated Ca$^{2+}$ entry (SOCE) ....................................... 31
C. OVERVIEW OF MEDICINAL COMPOUNTS AND EXTRACTS.... 34
1. Overview of Radix Astragalus................................................ 34
   1.1 Chemical constituents of Radix Astragalus ....................... 34
   1.2 Astragalus Saponins: Astragalosides ................................ 36
2. Overview of Danshen ................................................................ 38
   2.1 Chemical constituents of Danshen .................................. 39
   2.2 Cryptotanshinone ............................................................. 40
D. AIMS AND OBJECTIVES OF THE STUDY .............................. 41
CHAPTER 2 .......................................................................................... 42
MATERIAL AND METHODS .............................................................. 42
1. Materials ................................................................................ 43
2. Cell lines and cell culture........................................................ 43
3. Preparation of AST ............................................................... 44
4. Cell viability ............................................................................ 45
5. Western blot analysis ............................................................. 45
6. Nuclear protein extraction ....................................................... 46
7. Immunofluorescence staining ................................................. 46
8. Immunoprecipitation .............................................................. 47
9. Annexin V-FITC/PI staining ................................................................. 48
10. siRNA transfection ................................................................................ 49
11. Colony formation assays........................................................................ 49
12. Wound-healing cell migration assays .................................................... 49
13. Tumor xenografts in nude mice ............................................................. 50
14. Immunohistochemical analysis.............................................................. 51
15. In Vivo tumor growth and distant metastasis formation after intrasplenic transplantation........................................................................................ 51
16. Statistical analysis.................................................................................. 52

CHAPTER 3 ............................................................................................................... 53

RESULTS ................................................................................................................... 53

A. Astragalus Saponins modulate colon cancer development by regulating calpain-mediated glucose-regulated protein expression ........................ 54

1. AST induced ER stress-mediated apoptosis .......................................... 55
2. Involvement of calpains in AST-induced ER stress-mediated apoptosis ............................................................................................................... 58
3. Co-localization and dynamic interaction between calpain II and GRP78 ............................................................................................................... 63
4. Suppression of GRP78 by small interfering RNA enhances sensitivity of HCT 116 colon cancer cells ................................................................. 65
5. Effects of AST on GRP, calpains and tumor growth in HCT 116 xenografted nude mice ........................................................................... 67

B. Regulation of calpain-mediated glucose-regulated protein modulates colon cancer development ................................................................. 71

1. Tanshinones induce UPR activation in human colon cancer cells .......... 71
2. Effects of cryptotanshinone on UPR activation and ER stress .............. 74
3. Enhanced intracellular Ca\(^{2+}\) via cryptotanshinone stimulation is linked to ER stress response ................................................................. 78

4. Involvement of calpain in CPT-induced ER stress ......................... 83

5. Sensitization of cancer cells to apoptosis by inhibiting calpain activation is associated with blockage of GRP78 induction ....................... 88

6. Sensitization of cancer cells to apoptosis by inhibition of calpain activation is p53-dependent ................................................................. 93

7. Combined effects of cryptotanshinone and calpain inhibitor PD150606
   \textit{in vivo} .................................................................................................. 97

C. Involvement of store-operated Ca\(^{2+}\) entry (SOCE) in S100A4-mediated metastatic progression in colon cancer ................................. 102

1. Effect of pharmacological inhibition of various Ca\(^{2+}\) channels on extracellular S100A4-induced migration and Ca\(^{2+}\) response ............... 103

2. Effect of pharmacological inhibition of SOCE on Ca\(^{2+}\) signal transduction. 106

3. Effect of store-operated channel blocker on S100A4-induced metastasis formation \textit{in vivo} ................................................................. 109

CHAPTER 4 ............................................................................................................. 112

DISCUSSION AND CONCLUSION ........................................................................ 112

A. \textit{Astragalus} Saponins modulate colon cancer development by regulating calpain-mediated glucose-regulated protein expression .................. 113

B. Regulation of calpain-mediated glucose-regulated protein modulates colon cancer development ............................................................... 118

C. Involvement of store-operated Ca\(^{2+}\) entry (SOCE) in S100A4-mediated metastatic progression in colon cancer ......................... 125

CHAPTER 5 ............................................................................................................. 127

PROSPECTIVE WORKS ......................................................................................... 127

1. Proteomic analysis of novel proteins in AST-treated cells .................. 128
2. Isolation of putative active compounds from AST........................................ 128

3. Identification of the crosstalk between SOCE activity with intercellular S100A4 ................................................................................................ 129

4. Effect of pharmacological inhibition of SOCE on Ca\textsuperscript{2+} signal transduction in S100A4-overexpressed colon cancer cells ................................. 130

CHAPTER 6 ............................................................................................................. 131

CONCLUSION......................................................................................................... 131

CHAPTER 7 ............................................................................................................. 134

REFERENCES ......................................................................................................... 134

CHAPTER 8 ............................................................................................................. 161

PUBLICATION and CURRICULUM VITAE ....................................................... 161