ABSTRACT

Cyst enlargement is an important part of the initial stage of organ formation. *in vitro* experiments have shown that the speed of expansion of this nearly spherical object is affected by many factors. Moreover, in many cases, bursting of the cyst cell layer takes place from time to time, leading to nearly periodic deflation of the cyst sphere. Biophysical models have been proposed that take into account the build-up of osmotic pressure in the lumen and cell proliferation in the cyst layer. Here we integrate two previous models – for *Hydra* cyst swelling and collapse cycle and MDCK cyst growth saturation respectively – to describe the Caco-2 cyst swelling and rupture cycle in a series of experiments carried out in Prof. Jian-Dong Huang’s lab at HKU. Gene expression analysis is also carried out to identify pathways that are over-expressed and active during cyst enlargement.
TABLE OF CONTENTS

Declaration .. i
Abstract .. iii
Acknowledgements ... iii
Table of contents ... vi
List of figures .. viii

1 Introduction ... 1
 1.1 Cyst Formation and Enlargement 2
 1.1.1 *Hydra* Experiment 2
 1.1.2 MDCK Experiment ... 3
 1.2 Basic Biophysical Processes 4
 1.2.1 Osmotic Pressure 4
 1.2.2 Elastic Pressure 5
 1.2.3 Cell Proliferation 6
 1.2.4 Bursting and Outflow 6
 1.2.5 Ion influx ... 7
 1.3 Organization of the Thesis 9

2 Caco-2 experiment ... 11
 2.1 The Experimental System 11
 2.2 Data Extraction ... 12
 2.3 Quasi-periodic Bursting 14
3 Biophysical Models

3.1 Hydra Model .. 16
 3.1.1 Dynamic Process .. 16
 3.1.2 Model .. 17
 3.1.3 Model Behavior .. 18
 3.1.4 Remarks .. 20

3.2 MDCK Model .. 21
 3.2.1 Dynamic Process .. 21
 3.2.2 Model .. 22
 3.2.3 Model Behaviour ... 25
 3.2.4 Modification of MDCK Model 25
 3.2.5 Remarks .. 26

4 Further Analysis of Modified MDCK Model and Caco-2 Model 27

4.1 Further analysis of modified MDCK model 27
 4.1.1 Fixed Point ... 27
 4.1.2 Linear stability analysis and phase space flow 28

4.2 Caco-2 model .. 31
 4.2.1 The Caco-2 model .. 31
 4.2.2 Simulation of the Caco-2 Model 31
 4.2.3 Rupture .. 34

5 Microarray Gene Expression Analysis 36

5.1 Top Expressed Genes .. 38
5.2 Pathway .. 39
5.3 Gene Clustering ... 42

6 Summary .. 44

Appendices ... 45

A Model parameter table 46

Bibliography .. 47