Ulcerative colitis (UC), a subset of inflammatory bowel disease (IBD), is a chronic uncontrolled inflammatory condition of the intestinal mucosa. As its etiology remains unclear, no specific effective treatment is available. Therefore, development of novel strategies for IBD treatment remains a major medical need. Qing-dai Powder (QDP), an ancient herbal medicinal formula, exerted potent therapeutic effect on intractable UC patients; however, evidence-based support is needed. The aims of this study are: i) to delineate the anti-colitis effect of QDP and its underlying mechanisms in murine colitis; 2) to explore the rationality of QDP formula; 3) to investigate the anti-colitis effects of major component(s) or/and active ingredient(s) of QDP and their underlying mechanisms in murine colitis.

In the present study, the therapeutic effect of QDP on UC was investigated on dextran sulfate sodium (DSS)-induced acute murine colitis. Results showed that i) QDP dose-dependently attenuated disease activity index (DAI), colon shortening, histological damage and colonic myeloperoxidase (MPO) activity of DSS-treated mice; ii) QDP significantly decreased the infiltration of immune cells, particularly macrophages and CD4+ T cells, colonic levels of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6, and plasma level of chemokine MCP-1. In RAW 264.7 cells, QDP significantly suppressed lipopolysaccharide (LPS)-induced the production of TNF-α and IL-6, and the expression levels of COX-2 and iNOS via inhibiting IκB-α degradation and p65 nuclear translocation; Also, in primary CD4+ T cells, QDP significantly suppressed the differentiation of Th1 and Th17 cells. These findings indicate that the anti-colitis effects of QDP might be associated with inhibition of inflammatory responses of colonic macrophages and CD4+ T cells.
QDP is composed of Qing-dai and Ku-fan. The comparative study of anti-colitis of QDP, Qing-dai and Ku-fan revealed that QDP is a reasonable TCM formula, and Qing-dai is mainly responsible for the anti-colitis effect of QDP and Ku-fan exhibits a weak beneficial effect. Mechanistically, it was found that Qing-dai significantly suppressed Th1 and Th17 responses, characterized as i) suppressing mRNA expression of Th1 cytokine IFN-γ and Th17 cytokine IL-17A, inhibiting the production of Th1 and Th17-related cytokines IFN-γ, IL-17A/F and TNF-α in the colon of DSS-treated mice; ii) restraining the proportions of Th1 and Th17 cells in mesenteric lymph nodes of DSS-treated mice; iii) suppressing the differentiation of Th1 and Th17 cells in vitro.

Indirubin is the principle active component of Qing-dai. It was found that indirubin significantly suppressed the generation of Th17 cells in DSS-treated mice, evidenced by i) suppressing the mRNA expression of IFN-γ, IL-17A, and RORγt, and inhibiting the production of IL-17A/F, TNF-α, IL-1β and IL-6 in the colon of DSS-treated mice; ii) reducing Th17 cells in mesenteric lymph nodes of DSS-treated mice through reducing GSK-3β activity and p-STAT3 expression; iii) suppressing the differentiation of Th17 cells through down-regulating the expression of GSK-3β and p-STAT3 in vitro.

In summary, the present study provides evidence-based support for the clinical use of QDP in the management of UC, and indicates that indirubin is the main active compound of QDP responsible for its anti-colitis effect.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XVIII</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION ... - 1 -

1.1 Inflammatory bowel disease (IBD) ... - 2 -
 1.1.1 Incidence .. - 2 -
 1.1.2 Pathogenesis .. - 3 -
 1.1.2.1 Environmental triggers ... - 3 -
 1.1.2.1.1 Smoking ... - 4 -
 1.1.2.1.2 Non-steroidal anti-inflammatory drugs (NSAIDs) - 4 -
 1.1.2.1.3 Dietary factors ... - 5 -
 1.1.2.1.4 Cytomegalovirus infection ... - 6 -
 1.1.2.1.5 Stress ... - 6 -
 1.1.2.1.6 Others ... - 7 -
 1.1.2.2 Genetic factors .. - 8 -
 1.1.2.3 Microbial dysbiosis ... - 10 -
 1.1.2.4 Immune responses ... - 11 -
 1.1.2.4.1 Macrophages and dendritic cells ... - 11 -
 1.1.2.4.2 Th1 and Th2 cells ... - 13 -
1.3.1 Introduction .. - 39 -
1.3.2 Pharmacological activities .. - 39 -
 1.3.2.1 Inhibition of CDKs .. - 39 -
 1.3.2.2 Inhibition of GSK-3β ... - 41 -
 1.3.2.3 Others ... - 43 -
1.4 Hypothesis ... - 43 -
1.5 Objectives ... - 44 -

CHAPTER 2

MATERIALS AND METHODS ... - 46 -
2.1 Materials ... - 47 -
 2.1.1 Animals .. - 47 -
 2.1.2 RAW 246.7 cells ... - 47 -
 2.1.3 Reagents and assay kits .. - 47 -
 2.1.4 Antibodies ... - 50 -
 2.1.5 Primers ... - 52 -
2.2 Phytochemical analysis .. - 53 -
 2.2.1 Preparation of QDP ... - 53 -
 2.2.2 UPLC-QTOF-MS analysis ... - 53 -
2.3 Methods used for animal studies ... - 54 -
 2.3.1 Induction of colitis .. - 54 -
 2.3.2 Evaluation of disease activity index ... - 55 -
 2.3.3 Histological Analysis ... - 55 -
 2.3.4 MPO activity assay .. - 57 -
 2.3.5 Measurement of cytokines and chemokines .. - 57 -
 2.3.6 Immunohistochemical analysis .. - 58 -
 2.3.7 Analysis of colonic macrophages and CD4⁺ T cells in colon tissues - 58 -
 2.3.8 Western blot assay ... - 59 -
2.3.9 Quantitative real-time PCR analysis .. - 60 -
2.3.10 Analysis of Th1, Th17 and Tregs cells in mesenteric lymph nodes - 61 -

2.4 Methods used for cell studies .. - 62 -
2.4.1 RAW 264.7 cells culture .. - 62 -
2.4.2 MTT Assay for RAW 264.7 cells Viability .. - 63 -
2.4.3 Measurement of cytokines produced from RAW 264.7 cells - 63 -
2.4.4 Immunofluorescence Analysis of NF-κB (p65) translocation in RAW 264.7 cells .. - 63 -
2.4.5 Preparation of mouse CD4+ T cells ... - 64 -
2.4.6 Sorting of mouse naïve CD4 T cells .. - 65 -
 2.4.6.1 Preparation of mouse naïve CD4 T cells by cell sorting - 65 -
 2.4.6.2 Preparation of mouse naïve CD4 T cells by CD4+CD62L+ T Cell
 Isolation Kit II ... - 65 -
2.4.7 Proliferation of CD4+ T cells ... - 66 -
2.4.8 Differentiation of CD4+ T cells .. - 66 -
2.4.9 Intracellular cytokine staining ... - 67 -
2.4.10 Western blot analysis ... - 67 -

2.5 Statistical analysis .. - 68 -

CHAPTER 3

QDP PROMOTES RECOVERY OF COLITIS AND INHIBITS
INFLAMMATORY RESPONSES OF COLONIC MACROPHAGES AND CD4 T CELLS IN MICE WITH DSS-INDUCED COLITIS .. - 69 -

3.1 Introduction ... - 70 -
3.2 Experimental design .. - 72 -
3.3 Results .. - 76 -
 3.3.1 QDP ameliorated the severity of DSS-induced colitis - 76 -
3.3.2 QDP decreased colonic tissue damage and reduced colonic MPO
activity of DSS-treated mice ... - 78 -
3.3.3 QDP suppressed the production of colonic pro-inflammatory cytokines and serum MCP-1 in DSS-treated mice ... - 80 -
3.3.4 QDP decreased the infiltration of macrophages in the colon of DSS-treated mice ... - 81 -
3.3.5 QDP suppressed the production of TNF-α and IL-6 and expression of iNOS and COX-2 in LPS-induced RAW 264.7 cells .. - 84 -
3.3.6 QDP reduced IκB-α degradation and p65 nuclear translocation in LPS-induced RAW 264.7 cells ... - 86 -
3.3.7 QDP decreased the proportion of CD4+ T cells and mRNA expression of IFN-γ, IL-17A and RORγt in the colon of DSS-treated mice - 87 -
3.3.8 QDP inhibited the differentiation of Th1 and Th17 cells in vitro - 88 -
3.4 Discussion .. - 89 -
3.5 Summary .. - 93 -

CHAPTER 4
COMPARATIVE STUDY OF CHEMICAL COMPONENTS AND ANTI-COLITIS EFFECTS OF QDP AND ITS MEDICINAL MATERIALS - 94 -

4.1 Introduction .. - 95 -
4.2 Experimental design .. - 96 -
4.3 Results ... - 98 -
4.3.1 Identification of major components in QDP and Qing-dai by UPLC-QTOF-MS.. - 98 -
4.3.2 Anti-colitis effects of QDP and its medicinal materials Qing-dai and Ku-fan ... - 102 -
4.3.2.1 Effects of QDP and its medicinal materials on the severity of DSS-treated mice ... - 102 -
4.3.2.2 Effects of QDP and its medicinal materials on histological changes
of colon tissues in DSS-treated mice ... - 103 -

4.3.2.3 Effects of QDP and its medicinal materials on colonic MPO
activity of DSS-treated mice ... - 105 -

4.3.2.4 Qing-dai and Ku-fan in QDP exhibited an additivity to mitigate
DSS-induced colitis in mice .. - 106 -

4.4 Discussion ... - 107 -

4.5 Summary ... - 109 -

CHAPTER 5

QING-DAI ATTENUATES DSS-INDUCED COLITIS THROUGH
INHIBITING TH1 AND TH17 RESPONSES ... - 111 -

5.1 Introduction .. - 112 -

5.2 Experimental design .. - 113 -

5.3 Results ... - 115 -

5.3.1 Qing-dai ameliorated the severity of DSS-induced colitis in mice - 115 -

5.3.2 Qing-dai suppressed Th1- and Th17-characterized cytokines in the
colon of DSS-treated mice .. - 119 -

5.3.3 Qing-dai reduced the proportions of Th1 and Th17 cells in the colon
of DSS-treated mice .. - 120 -

5.3.4 Qing-dai suppressed the differentiation of Th1 and Th17 cells
in vitro ... - 121 -

5.3.5 Qing-dai suppressed the phosphorylation of p38 and ERK, and
inhibited the degradation of IκB-α in the colon of DSS-treated mice - 123 -

5.4 Discussion .. - 124 -

5.5 Limitation .. - 125 -

5.6 Summary ... - 126 -
CHAPTER 6

INDIRUBIN SUPPRESSES TH17 DIFFERENTIATION THROUGH INHIBITION OF GSK-3β SIGNALING IN DSS-INDUCED COLITIS - 127 -

6.1 Introduction .. - 128 -

6.2 Experimental design ... - 129 -

6.3 Results ... - 131 -

6.3.1 Indirubin ameliorated the severity of DSS-induced colitis in mice - 131 -

6.3.2 Indirubin suppressed Th17-related cytokines in the colon of DSS-treated mice .. - 135 -

6.3.4 Indirubin reduced the proportions of Th1 and Th17 cells in mesenteric lymph nodes of DSS-treated mice ... - 137 -

6.3.5 Indirubin up-regulated GSK-3β phosphorylation and reduced STAT3 phosphorylation in mesenteric lymph nodes of DSS-treated mice - 139 -

6.3.6 Indirubin suppressed the differentiation of Th17 cells via influencing the GSK-3β signaling *in vitro* ... - 140 -

6.4 Discussion ... - 142 -

6.5 Summary .. - 144 -

CHAPTER 7

CONCLUSION AND PROSPECTS .. - 145 -

7.1 Conclusion .. - 146 -

7.1.1 QDP promoted the recovery of colitis and reduced inflammatory responses of colonic macrophages and CD4+ T cells in DSS-treated mice... - 146 -

7.1.2 Qing-dai is mainly responsible for the anti-colitis effect of QDP, and its beneficial effect is associated with suppression of Th1 and Th17 differentiation ... - 147 -

7.1.3 Indirubin suppressed the differentiation of Th17 cells in DSS-induced colitis
via influencing the GSK-3β signaling... - 148 -

7.2 Prospects.. - 149 -

7.2.1 Effects and underlying mechanisms of Qing-dai and indirubin on
macrophages in colitis.. - 149 -

7.2.3 Effects and underlying mechanisms of Qing-dai and indirubin on
chronic colitis and colitis-associated colorectal cancer - 150 -

7.2.3 Development of Qing-dai or indirubin-based pharmaceutic
preparation in treatment of IBD... - 151 -

REFERENCES... - 152 -

LIST OF PUBLICATIONS.. - 172 -

PATENTS.. - 174 -

CURRICULUM VITAE .. - 175 -