ABSTRACT

Hydrogen as a clean energy carrier has drawn great attention. Production of H₂ from sustainable bio-oil is considered an alternative for conventional fossil fuel based energy system, since the overall process of bio-oil converting to H₂ ideally is carbon-neutral and hence environmental friendly.

This study focuses on developing an adequate catalyst for bio-oil steam reforming to produce H₂. Ruthenium and/or nickel based catalysts supported on alumina, ceria-alumina or ceria-silica were synthesized by sol-gel method or incipient wetness impregnation and characterized using BET Surface area analysis, Powder X-Ray diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). Steam reforming of selected model compounds, n-propanol, glycerol and acetic acid, was investigated in a fixed bed tubular flow reactor over the prepared catalysts at 450 or 500 °C. The effects of support nature, preparation method, catalyst composition and reaction temperature on the steam reforming activity and stability of catalysts were studied. Catalysts showing better performance in terms of reactant conversion and H₂ yield were selected for investigating the steam reforming of an acetic acid/glycerol aqueous mixture, consisting of acetic acid and glycerol with a weight ratio of 3/7 similar to a bio-oil generated from fast pyrolysis of cellulose. The steam-to-carbon ratio (S/C) and the flow rate of feed were constant at 4 and 0.1 ml/min, respectively. The effluent gas was monitored by GC/TCD and the evolution of carbon conversion and product gas distribution as a function of time was studied.

Among all catalysts investigated, the one with nominal composition A10C10N1Rnc showed the best performance in steam reforming at 500 °C as indicated by higher and more stable H₂ yields achieved regardless the reactant used.
In order to investigate the sorption-enhanced steam reforming, three CaO-based CO₂ absorbents were synthesized: two derived from calcium acetate with or without MgO support, noted as CAM and CA, respectively, and the other MgO-supported one derived from calcium d-gluconate, denoted as CGM. Results from the 15-carbonation/regeneration-cycle test suggested that the MgO-containing absorbent CAM has the highest CaO molar conversion and stable CO₂ absorption capacity. Though significantly higher CO₂ absorption capacity was shown from absorbent CA in the first one cycle, CA absorbent soon lost most of the CO₂ absorption capacity due to severe sintering. In addition, the CO₂ absorption capacity of absorbent CGM might be underestimated due to insufficient carbonation time.

The A10C10N1Rnc catalyst and the CAM absorbent were applied in the steam reforming of acetic acid/glycerol mixture at 500°C. However, no significant improvement can be observed in the presence of absorbent CAM.
TABLE OF CONTENTS

DECLARATION..i
ABSTRACT..ii
ACKNOWLEDGEMENT ..iv
TABLE OF ABBREVIATION ..v
TABLE OF CONTENTES ...vi
LIST OF TABLES ..x
LIST OF FIGURES ..xi

CHAPTER I ..1
Introduction...1

1.1 Background ..1
1.2 Biomass ...4
 1.2.1 Biomass gasification ...4
 1.2.2 Biomass fast pyrolysis ...5

1.3 Bio-oil ..6

1.4 Catalytic steam reforming of model compounds with or without CO₂ sorbent 8
 1.4.1 Thermodynamic analysis ...8
 1.4.2 The effect of in-situ CO₂ removal..15
 1.4.3 Catalysts for steam reforming of model compounds and bio-oil.16
 1.4.3.1 Acetic acid ..17
 1.4.3.2 Ethanol ...22
 1.4.3.3 Glycerol...25
 1.4.3.4 Other model compounds ..38

1.5 Catalyst synthesize methods ...39

1.6 Design of CO₂ absorbents ..40
1.7 Objectives of study .. 45

CHAPTER II .. 46

Experimental ... 46

2.1 Catalysts preparation .. 46
 2.1.1 Sol-gel method .. 47
 2.1.2 Incipient wetness impregnation method .. 48

2.2 Catalyst characterization ... 49
 2.2.1 BET .. 49
 2.2.2 X-ray diffraction (XRD) ... 50
 2.2.2.1 Conventional XRD ... 50
 2.2.2.2 In situ XRD ... 50
 2.2.3 Temperature-programmed reduction (TPR) 50
 2.2.4 Scanning electron microscopy/energy dispersive X-ray (SEM/EDX) .. 51

2.3 Catalytic steam reforming .. 51
 2.3.1 Catalytic activity test setup .. 51
 2.3.2 Calculation .. 53

2.4 Absorbents preparation .. 58
 2.4.1 Calcium oxide (CaO) based CO₂ absorbents without support: 58
 2.4.2 Magnesium oxide (MgO) nanoplate supported CaO-based CO₂ absorbents .. 58
 2.4.2.1 MgO nanoplate preparation ... 58
 2.4.2.2 Supported CaO-based CO₂ absorbents preparation 58

2.5 Absorbent characterization ... 59

2.6 Absorbent testing ... 60
 2.6.1 Setup .. 60
 2.6.2 Calculation .. 61
 2.6.2.1 CO₂ absorption capacities for absorbents with or without MgO support .. 61
 2.6.2.2 CaO molar conversion for the absorbent without MgO support
2.6.2.3 CaO molar conversions for absorbents with 50 wt% MgO support

2.7 Sorption-enhanced steam reforming

2.7.1 Setup

2.7.2 Calculation

CHAPTER III

Results and Discussion

3.1 Characterization of Catalysts

3.1.1 BET surface area

3.1.2 XRD patterns of catalysts

3.1.2.1 Conventional XRD

3.1.2.2 In-situ XRD

3.1.3 TPR of catalysts prepared by incipient wetness impregnation method

3.1.3.1 The effect of Ru addition

3.1.3.2 The effect of ceria loading

3.1.3.3 The effect of calcination of Ru precursor

3.1.4 SEM/EDX

3.2 Activity test

3.2.1 n-propanol

3.2.1.1 Effect of support

3.2.1.2 Effect of synthesis method

3.2.1.3 Effect of ceria loading

3.2.1.4 Effect of Ni loading

3.2.1.5 Catalytic steam reforming of n-propanol at 450 °C

3.2.1.5.1 Effect of Ni and ceria loadings

3.2.1.5.2 Effect of reaction temperature

3.2.2 Glycerol
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.1.</td>
<td>Effect of chemical composition</td>
<td>109</td>
</tr>
<tr>
<td>3.2.2.2.</td>
<td>Effect of reaction temperature</td>
<td>114</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Acetic acid</td>
<td>116</td>
</tr>
<tr>
<td>3.2.3.1.</td>
<td>Effect of catalyst composition</td>
<td>116</td>
</tr>
<tr>
<td>3.2.3.2.</td>
<td>Effect of reaction temperature</td>
<td>120</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>Mixture consist of acetic acid and glycerol</td>
<td>122</td>
</tr>
<tr>
<td>3.4</td>
<td>Cyclic carbonation/regeneration test of absorbent</td>
<td>128</td>
</tr>
<tr>
<td>3.4</td>
<td>Sorption-enhanced steam reforming</td>
<td>133</td>
</tr>
</tbody>
</table>

CHAPTER IV .. 137

Conclusion and Future plan .. 137

4.1. | Conclusion | 137 |
4.2. | Limitations | 140 |
4.3. | Future plan | 141 |

Reference ... 142

CURRICULUM VITAE ... 149