Abstract

Many contaminants, such as industrial chemicals, fertilizers, herbicides, pharmaceuticals and heavy metals are released to the environment. 3,4-dichloroaniline (3,4-DCA) originated from degradation of some herbicides such as diuron, propanil and linuron, is toxic to aquatic organisms and affects human being immune system. Triclosan, widely used as antimicrobial agent in pharmaceuticals and personal care products (PPCPs), has been detected as contaminant in various aquatic environments. In this work, green algae were isolated from local environment, then applied for the removal and biodegradation of 3,4-DCA and triclosan.

Two axenic pure algae were isolated using the solid agar method. One of the algae was identified morphologically as *Desmodesmus* sp. based on the experimental results. The other one was identified morphologically as *Chlorella pyrenoidosa* by accredited authority. At the same time, alga *S. obliquus* was obtained commercially. All the three green algae were cultured in tris-acetate-phosphate (TAP) medium.

Firstly, the alga *C. pyrenoidosa* was applied to remove and biodegrade 3,4-DCA with a concentration of 4.6 μg/mL for 7 d. A removal percentage of 78.4% was obtained over a 7-d period. Two major metabolites with less toxicity were identified as 3,4-dichloroformanilide and 3,4-dichloroacetanilide using HPLC-ESI-ion trap-MS.
Secondly, all the three green microalgal species including *C. pyrenoidosa*, *Desmodesmus* sp., and *S. obliquus*, were compared in the removal and biodegradation of triclosan in aqueous medium. When triclosan with concentration of 400 ng/mL was cultured with the three algal species separately, triclosan was quickly eliminated from medium in the 1 d cultivation by algae with removal percentages of 62.4%, 92.9% and 99.7% for *C. pyrenoidosa*, *Desmodesmus* sp. and *S. obliquus*, respectively. The dominant mechanism for the removal of triclosan by *C. pyrenoidosa* was determined as cellular uptake. Biotransformation of triclosan involved hydroxylation and methylation, glucose conjugation was determined as the predominant mechanisms for the removal of triclosan by algae *Desmodesmus* sp. and *S. obliquus*. The intermediates from hydroxylation, reductive dechlorination, or ether bond cleavage were immediately subjected to glucosylation and/or methylation via the hydroxyl group of triclosan or introduced, which served as detoxification mechanisms of the chlorinated aromatic chemicals.

In order to find the intermediates in the metabolic pathway of triclosan by algae, *Desmodesmus* sp. was exposed to 400 ng/mL triclosan. 2,4-DCP was detected during the cultivation period 3-12 h using ultra performance liquid performance (UPLC)-ESI-MS/MS. The metabolites from multi metabolic reaction like the glucose conjugate of hydroxylated triclosan were detected in the first 30 min after exposure. The metabolites as products from glucosylation and consecutive hydroxylation and methylation of triclosan or 2,4-DCP were detected after 3 h
cultivation.

To provide more information about the reductive capability of *C. pyrenoidosa*, the reaction between *C. pyrenoidosa* and triclosan was investigated. When *C. pyrenoidosa* was exposed to triclosan with concentration from 100 to 800 ng/mL, more than 50% of triclosan was eliminated by algal uptake from the culture medium during the first 1 h exposure. In the biodegradation experiments, a major metabolite from the reductive dechlorination of triclosan was identified by using liquid chromatography (LC)-ESI-MS. The ability of reductive dechlorination of *C. pyrenoidosa* might potential application for bioremediation of polychlorinated biphenyls (PCBs) that with similar chemical structure to triclosan, but belonging to the catagory of persistent organic pollutants (POPs). Through the TEM observation, it was found that the triclan treatment resulted in the disruption of the chloroplast of algal cells, which indicated that triclosan may affect membrane metabolism.
Table of Contents

Declaration ... i
Abstract ... ii
Acknowledgements .. v
Table of Contents .. vii
List of Tables .. xi
List of Figures .. xii
List of Abbreviations .. xv

Chapter 1 Introduction ... 1

1.1 Background .. 1

1.2 Biotreatment ... 5

 1.2.1 The mechanisms for removal of pollutants .. 7

 1.2.2 The biodegradation of chlorinated aromatic compounds ... 9

1.3 Culture and isolation of green algae ... 12

1.4 Removal and biodegradation of 3,4-DCA by C. pyrenoidosa ... 15

1.5 Removal and metabolism of triclosan by three different microalgal species .. 22

1.6 Reductive dechlorination of triclosan by C. pyrenoidosa ... 29

1.7 Aims of project ... 30

Chapter 2 Isolation and culture of green algae .. 35

2.1 Introduction ... 35
2.2 Materials and methods .. 37

2.2.1 Isolation of green algae ... 37

2.2.2 Culture of algae ... 38

2.2.3 Control of contamination ... 39

2.2.4 Algal counting .. 40

2.2.5 The life cycle observation .. 41

2.3 Results and discussion ... 43

2.3.1 C. pyrenoidosa ... 43

2.3.2 Desmodesmus sp. ... 50

2.3.3 S. obliquus ... 54

2.3.4 Selection of the three algae ... 56

2.4 Chapter summary .. 58

Chapter 3 Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa

3.1 Introduction .. 59

3.2 Materials and Methods ... 61

3.2.1 Chemicals and cultivation medium ... 61

3.2.2 Cultivation condition and alga growth .. 61

3.2.3 Biodegradation experiment ... 62

3.2.4 Sample preparation ... 62

3.2.5 Analysis of 3,4-DCA and its metabolites .. 63

3.3 Results ... 65
Chapter 4 Removal and metabolism of triclosan by three different microalgal species

4.1 Introduction
4.2 Material and Methods
4.2.1 Chemicals and cultivation medium
4.2.2 Cultivation condition and algal growth
4.2.3 Growth inhibition tests with triclosan
4.2.4 Biodegradation of triclosan
4.2.5 Sample preparation for LC-MS analysis
4.2.6 Analysis of triclosan and its metabolites
4.3 Results
4.3.1 Analysis of triclosan and its metabolites
4.3.2 Growth inhibition tests with triclosan
4.3.3 Removal of triclosan by different microalgal species
4.3.4 Metabolites identification and metabolic pathway
4.4 Discussion
4.5 Chapter Summary
Chapter 5 Reductive dechlorination of triclosan by Chlorella pyrenoidosa ... 142

5.1 Introduction ... 142

5.2 Material and Methods .. 144

5.2.1 Chemicals and cultivation medium .. 144

5.2.2 Cultivation condition and algal growth .. 144

5.2.3 Removal of triclosan ... 145

5.2.4 Biodegradation of triclosan .. 145

5.2.5 Sample preparation for LC-MS analysis ... 146

5.2.6 Analysis of triclosan and its metabolites ... 147

5.3 Results .. 150

5.3.1 Elimination of triclosan .. 150

5.3.2 The algal growth .. 152

5.3.3 The biodegradation of triclosan and metabolite identification 157

5.4 Discussion .. 163

5.5 Chapter Summary .. 168

Chapter 6 Conclusions and Future Studies ... 169

References .. 173

Curriculum Vitae .. 201

Outcome of the Thesis Work ... 202

Publications .. 202