ABSTRACT

Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of protein aggregates (namely Lewy bodies) in dopaminergic neurons in the substantia nigra region of the brain. Alpha-synuclein (α-syn) is the major component of Lewy bodies (LBs) in PD, and impairment of the autophagy-lysosomal pathway has been linked to its accumulation. In our previous study, we identified corynoxine B (Cory B), an oxindole alkaloid isolated from Uncaria rhynchophylla (Miq.) Jacks (Gouteng in Chinese), as a Beclin-1-dependent autophagy enhancer. In this work, we continued to screen autophagy enhancers from Gouteng alkaloids, and found corynoxine (Cory), an isomer of Cory B, also induces autophagy in different neuronal cell lines and primary neurons. Meanwhile, Cory promotes the formation of autophagosomes in the fat bodies of Drosophila. By inducing autophagy, Cory promotes the clearance of wild-type and A53T α-syn in inducible PC12 cells. Interestingly, different from its enantiomer Cory B, Cory induces autophagy through the Akt/mTOR pathway as evidenced by the reduced levels of phospho-TSC2, phospho-Akt, phospho-mTOR and phospho-p70 S6 Kinase.

To identify the different pathway between Cory and Cory B, we performed phosphoproteomic study on N2a cells. With the help of iGPS (In vivo Group-based Prediction System), protein kinases which were significantly regulated by Cory or
Cory B were predicted. Based on these kinases, we drew the detailed kinase-substrates network regulated by Cory or Cory B. The structures of Cory and Cory B differ only in the stereochemistry at the spiro carbon; however, Cory has more effect on the CAMK, Trb and TSSK families, while CDK and CDKL families are more sensitive to Cory B.

Furthermore, we established a rotenone rat model of PD via injecting rotenone into the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA), and evaluated the neuroprotection of Cory and Cory B on this rat model. Motor dysfunction, decreased TH level, impairment of autophagy, aggregation of α-syn and activation of microglia were all found on this PD model, which were consistent with previous reports. After the treatment of Cory or Cory B, we found that both Cory and Cory B improve motor dysfunction, increase the TH level, and inhibit microglial activation. Both Cory and Cory B decrease the puncta number of aggregated α-syn, likely due to the induction of autophagy. All these results indicate the neuroprotection of Cory and Cory B against PD.

Collectively, our findings (1) provide the original finding of Coy to be an autophagy enhancer with experimental evidences that Cory inhibited the pathway of Akt/mTOR; (2) provide cellular and animal experimental evidences for developing Cory or Cory
B as anti-PD agent, by inducing autophagy in neurons; and (3) provide candidate pathways to identify the primary molecular target of Cory or Cory B, which may turn out to be potential therapeutic targets for treating PD.

Keywords: Parkinson’s disease, Cory, Cory B, autophagy, phosphoproteomic, neuroprotection
TABLE OF CONTENTS

DECLARATION ... I

ABSTRACT ... II

TABLE OF CONTENTS .. VII

LIST OF TABLES ... XIII

LIST OF FIGURES ... XIV

LIST OF ABBREVIATION .. XIX

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Parkinson’s Disease .. 2

1.2 Epidemiology of PD .. 2

1.3 Pathology of PD ... 3

1.4 Etiology of PD ... 4

1.4.1 Genetic of PD ... 4

1.4.1.1 SNCA (PARK1/PARK4) ... 5

1.4.1.2 LRRK2 (PARK8) ... 6

1.4.1.3 PARKIN (PARK2)/ PINK1 (PARK6)/ DJ-1 (PARK7) 7

1.4.2 Deficits of mitochondrial complex I in PD 8

1.4.3 Impairment of ubiquitin-proteasome system (UPS) and
autophagy-lysosome system (ALP) in PD... 10

1.5 TREATMENT OF PD.. 12

CHAPTER 2 .. 15

HYPOTHESIS AND OBJECTIVES... 15

CHAPTER 3 .. 19

CORYNOXINE, A NATURAL AUTOPHAGY ENHANCER, PROMOTES
THE CLEARANCE OF ALPHA-SYNUCLEIN VIA AKT/MTOR PATHWAY
.. 19

3.1 INTRODUCTION .. 20

3.2 RESEARCH MATERIALS AND METHODOLOGY.. 21

3.2.1 Reagents and antibodies.. 21

3.2.2 Cell lines and cell culture... 22

3.2.3 Primary neuron culture.. 22

3.2.4 Drosophila culture and drug feeding ... 23

3.2.5 RNA interference assay... 24

3.2.6 Transfection of plasmids into N2a cells ... 25

3.2.7 Immunostaining .. 25

3.2.8 Western blotting analysis .. 26

3.2.9 Statistical analysis ... 26

3.3 RESULTS .. 27
3.3.1 Screen for potential autophagy enhancer from 6 Gouteng alkaloids 27
3.3.2 Cory induces autophagy in neuronal cell lines and primary neuron..... 29
3.3.3 Cory induces autophagy in Drosophila. .. 40
3.3.4 Cory promotes the degradation of wild type (WT) and mutant (A53T)
\(\alpha \)-syn via autophagy .. 42
3.3.5 Cory induces autophagy through Akt/mTOR pathway 46
3.4 DISCUSSION .. 50

CHAPTER 4 .. 54

PHOSPHOPROTEOMIC STUDY OF CORYNOXINE AND CORYNOXINE B
ON NEURONAL CELL CULTURE... 54

4.1 INTRODUCTION .. 55

4.2 Material and Methods .. 58

4.2.1 Reagents .. 58

4.2.2 Stable isotope labeling and compounds treatment of N2a cells 58

4.2.3 Isolation of peptide and determination of labeling efficiency 59

4.2.4 Total protein extraction for phosphoproteome profiling Crude Protein

Extraction .. 60

4.2.5 Protein digestion in solution .. 60

4.2.6 HPLC Fractionation .. 60

4.2.7 IMAC Enrichment .. 61
4.2.8 LC-MS/MS Analysis .. 61
4.2.9 Database search ... 62

4.3 RESULTS ... 64
4.3.1 Basic information of phosphorylation sites identified with LC/MS 64
4.3.2 Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for phosphoproteins 68
4.3.3 The kinase activity analysis based on the information of phosphorylated
sites ... 73
4.3.4 Differences between Cory and Cory B .. 83

4.4 DISCUSSION .. 86

CHAPTER 5 ... 89

NEUROPROTECTION STUDY OF CORYNOXINE AND CORYNOXINE B
ON A ROTENONE RAT MODEL OF PARKINSON’S DISEASE 89

5.1 INTRODUCTION ... 90
5.2 MATERIALS AND METHODS ... 91
5.2.1 Regents ... 91
5.2.2 Animals .. 91
5.2.3 Treatment ... 92
5.2.4 Acute toxicity study of Cory and Cory B ... 92
5.2.5 TH (Tyrosine Hydroxylase) staining ... 93
5.2.6 Fluoresce immunostaining ... 94

5.2.7 Western blotting analysis ... 94

5.2.8 Statistical analysis ... 94

5.3 Results ... 95

5.3.1 Acute toxicity study of Cory and Cory B .. 95

5.3.2 Cory B induces autophagy in normal mouse 97

5.3.3 Establishing the rotenone rat model of PD .. 98

5.3.4 Cory and Cory B improve the motor dysfunction 99

5.3.5 Cory and Cory B increase TH level. .. 101

5.3.6 Cory and Cory B induce autophagy and decrease α-syn aggregation in
the rotenone rat model of PD .. 105

5.3.7 Cory and Cory B decrease active microglia cells 110

5.4 Discussion ... 113

CHAPTER 6 .. 117

DISCUSSION AND CONCLUSIONS ... 117

6.1 Identify oxindole derivatives as mTOR inhibitor 118

6.2 Alpha-synuclein clearance via autophagy to against PD 118

6.3 Identify different signaling pathway via phosphoproteomic 119

PUBLICATIONS LIST .. 147

REFERENCE .. 121