Study of Stimulated Emission from Light Emitting Polymers

CHAN Kin Long

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

Principal Supervisor: Prof. CHEAH Kok Wai

Hong Kong Baptist University

Aug 2015
DECLARATION

I hereby declare that this thesis represents my own work which has been done after registration for the degree of MPhil at Hong Kong Baptist University, and has not been previously included in a thesis or dissertation submitted to this or other institution for a degree or other qualifications.

Signature: ____________________________

Date: Aug 2015
ABSTRACT

Efficient and high light amplification of optical resonator in organic laser is one of the critical factors for high performance organic laser. It can be achieved by using microcavity and DFB structures, which are commonly adopted methods to enhance light amplification in specific wavelength. Both of them are the more widely used structures in inorganic and organic lasers. In this work, we employed nearly 100% reflection (at 450 nm) DBR and Al to act as reflected mirror inside the microcavity device. The function of microcavity has been examined to show the ability of device in tuning laser emission wavelength and overcoming the loss of organic-metal interface. DFB structure was used to demonstrate different laser emissions with respect to different grating periods. The finding clarifies the role of the structure in enhancement of light amplification leading to lower threshold, which was half of that of amplified spontaneous emission from single layer of PFO. As designed laser mode is also an important factor to get a high performance organic laser, those laser modes of structures have been designed and estimated by simulations and consistent with the experimental results.

Color tunable light source has great potential for display, lighting and bio-imaging. Current broadband light sources, however, have their own limitations in beam divergence and device size. In this work, we demonstrated a spatially variant light source with tunable color emission property by using two cascaded organic thin films, which emit blue and green ASE respectively under optical pumping. By spatially selecting the overlapping of the directional ASE from the cascaded films, we show that the color of light emission can be continuously tuned from blue, white to green.
ACKNOWLEDGEMENTS

I would like to send my thankfulness profoundly to my supervisor, Prof. K.W. Cheah for his guidance and advice during the study period. His patience and generous in accepting all my demerits are appreciatively acknowledged. I am also grateful to have an opportunity to participate in different projects, which broaden my horizon in the various research fields.

I would also like to express my sincerely thanks to my co-supervisor, Dr. G.X. Li, for his comments and concern to my studies. His guidance is of paramount importance during the experiment. Thanks are also given to Dr. S.M. Chen for her assistance in the SEM experiments, and Mr. P.L. Tse for his technical support in the equipment operation.

Sincere thanks are also given to my co-workers in IAM, namely, Dr. H.L. Tam, Dr. K.F. Li, Miss C.M. Chow, Dr. S.Y. Ching, Miss. Y.W. O, Miss K.M. Fung, Mr. K.C. Tam, Dr. C. Cai, And Mr. W.Y. Lam. They assisted me to finish all my experiments successfully by sharing their research experience and knowledge.

Also, I would like to take this chance to thank all my friends in Physics Department and other Departments for providing me a pleasant and happy study period.

Last but not least, I would like to thank my family, grandmother, father, mother, brother and Emily Chong for support, patience and encouragement throughout my study.
TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES .. viii

LIST OF TABLES ... xii

CHAPTER 1 INTRODUCTION TO LIGHT AMPLIFICATION .. 1

1.1 History and development of light amplification ... 1

1.2 History and development of light emitting polymers .. 4

1.3 Research focus .. 6

CHAPTER 2 THEORY OF LIGHT AMPLIFICATION ... 7

2.1 Introduction ... 7

2.2 Electrical properties ... 8

2.3 Optical properties .. 8

2.3.1 Absorption and emission ... 8

2.3.2 Gain in polymer .. 10

2.3.3 Spontaneous and stimulated emission .. 11

2.3.4 Amplified spontaneous emission ... 13

2.4 Polymer laser .. 15

2.4.1 Waveguiding .. 16

2.4.2 Distributed feedback laser ... 16

2.4.3 Microcavity laser .. 18

CHAPTER 3 EXPERIMENTAL DETAILS ... 20

3.1 Materials used ... 20

3.2 Substrate preparations ... 21

3.2.1 Cleaning procedures ... 22

3.2.2 Pre-treatment ... 22
CHAPTER 4 TUNABLE COLOR EMISSION FROM CASCADED ORGANIC THIN FILMS
4.4.5.1 x-direction

4.4.5.2 y-direction

CHAPTER 5 DISTRIBUTED FEEDBACK LASER

5.1 Simulation of DFB structure

5.2 Laser spectra

5.3 Energy dependence of DFB laser

CHAPTER 6 UNPOLARIZED LASING EMISSION FROM ORGANIC MICROCAVITY

6.1 Distributed Bragg mirror

6.2 Cavity design

6.3 Lasing emission from microcavity laser

6.3.1 Lasing emission

6.3.2 Energy dependence

CHAPTER 7 CONCLUSION

LIST OF REFERENCES

PUBLICATIONS AND CONFERENCE POSTER

CURRICULUM VITAE