Abstract

Two topics related to the experimental design are considered in this thesis. On the one hand, The uniform experimental design (UD), a major kind of space-filling design, is widely used in applications. The majority of UD tables (UDs) with good uniformity are generated under the centralized L_2-discrepancy (CD) and the wraparound L_2-discrepancy (WD). Recently, the mixture L_2-discrepancy (MD) is proposed and shown to be more reasonable than CD and WD in terms of uniformity. In first part of the thesis we review lower bounds for MD of two-level designs from a different point of view and provide a new lower bound. Following the same idea we obtain a lower bound for MD of three-level designs. Moreover, we construct UD}s under the measurement of MD by the threshold accepting (TA) algorithm, and finally we attach two new UD tables with good properties derived from TA under the measurement of MD. On the other hand, the problem of selecting a specific number of representative points (RPs) to maintain as much information as a given distribution has raised attention. Previously, a method has been given to select type-II representative points (RP-II) from normal distribution. These point sets have good properties and minimize the information loss. Whereafter, following similar idea, Fu, 1985 have discussed RP-II for gamma distribution. In second part of the thesis, we improve the discussion of selecting Gamma RP-II and provide more RP-II tables with a number of parameters. Further in statistical simulation, we also evaluate the estimation performance of point sets resampled from Gamma RP-II by making comparison in different situations.

Keywords: Hamming distance, Mixture discrepancy, Threshold accepting algorithm, Uniform design, Representative points, Loss function, Gamma distribution, Resampling, Moment estimation, Maximum likelihood estimation
Acknowledgements

First, I would like to place my sincerest gratitude to Prof. Kai-tai Fang. Prof. Fang is a precise scholar and a patient educator. His invaluable guidance and charismatic personality not only lead my research to the correct direction, but also influence my future career. After every discussion with him, I can feel myself improved and new thoughts germinated. It is my fortune to have a chance to learn from Prof. Fang.

Equally, I would give my greatest thankfulness to my supervisor, Dr. Hua-jun Ye. Dr. Ye is an experienced statistician with solid background in mathematics. His sensitivity and foresight in research strongly impresses me and inspires me. During my thesis writing, Dr. Ye meticulously revised my manuscript and provided constructive advices. He kept reminding me to accomplish the thesis in a high standard. It is my honor to study under his supervision. Dr. Ye is undoubtedly one of the most influential person in my life.

I would thank my co-supervisor, Dr. Heng Peng, as well. Dr. Peng took care of me during the semester I attended courses in Hong Kong. I thank Prof. Fred Hickernell, Prof. Kai-fun Yu, Dr. Yong-dao Zhou, Mr. Min Zhou and Mr. Rong Zhang for their idea sharing and comments to my thesis. I also acknowledge the support and help from colleagues in UIC Department of Statistics and staff in UIC Graduate Office and HKBU Graduate School during my Mphil study.

Last but not least, I would thank my family and friends for their long term encourage and understanding.
Table of Contents

Declaration .. i
Abstract .. ii
Acknowledgements .. iii
Table of Contents .. iv
List of Tables ... vi
List of Figures .. viii

Chapter 1 Introduction
1.1 Overview ... 1
1.2 Preliminary and notations
 1.2.1 Uniform experimental design 2
 1.2.2 Representative points 7
1.3 Summary of the dissertation 8

Chapter 2 Lower bounds for MD of Two- and three-level designs
2.1 Lower bound for MD of two-level designs 10
2.2 Lower bound for MD of three-level designs 12

Chapter 3 Construction of UDs using TA algorithm
3.1 Effect from the selection of initial design 17
3.2 Iteration formulae 19
3.3 Uniform designs generated by TA under MD 21

Chapter 4 Selecting a specified number of RP-II from Gamma distribution 25
 4.1 Mathematical model .. 25
 4.2 Properties for the function set 27
 4.3 Algorithm to obtain Gamma RP-II 32

Chapter 5 Application of Gamma RP-II in estimation and simulation 34
 5.1 Estimating Gamma parameters from RP-II 34
 5.2 Application of Gamma RP-II in statistical simulation 39
 5.2.1 Estimation in simulation based on RP-II, RP-I and Gamma distribution ... 42

Chapter 6 Conclusion and further study 47

Bibliography 49

Curriculum Vitae 60