Functional Role of CKIP-1 for Bone Formation Reduction During Aging: Micro CT analysis

He Bihui
14448580

A thesis submitted for the Degrees of Master of Chinese Medicine

Principal Supervisor: Prof. Zhang Ge

School of Chinese Medicine HongKong Baptist University

June 2015
Abstract

Background: Bone metabolism is a dynamic balance, consisting two major courses: bone resorption and bone formation. Bone loss during aging is an age-associated process. There are several aspects changing with age in bone, including bone mechanical behavior, bone mineral matrix, bone proteins, genetic and molecular signaling in bone cells physiology. Based on the above factors, when the formation decreases, it leads to a disorder disease: osteoporosis, characterized by low bone mineral density and degenerating microstructure, resulting in increased risks of bone fractures. Many previous studies aim on how to reduce bone resorption, but there is a study shows that Smurf1 has an important role in inhibiting osteoblast activity but not influencing osteoclast activity. And Ckip-1(casein kinase-2 interacting protein-1) can reinforce the process. This thesis focuses on CKIP-1 functional role in regulating bone formation and the results are discussed on the basic of micro CT data analysis.

Aim: Evaluate the functional role of CKIP-1 in regulating bone formation through BMP signaling pathway in established osteoporosis rats model on bone hismophometric parameters.

Methods: The bodies of tibia and femur were obtained from thirty-six six-month-old female rats which had been divided into either CKIP-1 knockout(KO;n=18) group or CKIP-1 wild type(WT;n=18) group. According to rats age, a timeline was divided into three parts: 4 months, 6 months and 8 months. Every time point included two groups(KO=6; WT=6). Ten days and three days before sacrificed, Calcein green(10mg/kg)and xylenol orange(30mg/kg)would be injected intraperitoneally in all the rats to symbol the surface of bone formation. After sacrifice, the tibia and femur bodies would be scanned and reconstructed as 3D images by micro CT.
Results: Figure decrease in micro CT parameters during aging is attenuated in KO group.

Conclusion: The negatively functional role of CKIP-1 in monitoring bone formation in aging bone can be a good way and high specificity regulate bone formation.

Keywords: CKIP-1(Casein kinase-2 interacting protein-1); KO groups(knockout); WT groups(wild type); Micro CT.
Contents

Declaration .. 1

Acknowledgment .. 2

Abstract ... 3

Contents ... 5

Part I A review of Molecular Mechanism for Bone Formation and Treatment for Osteoporosis .. 7

1.1 Introduction .. 7

1.2 Mechanism in bone resorption and bone formation ... 7

1.2.1 Bone resorption ... 7

1.2.2 Bone formation ... 8

1.3 Role of CKIP-1 in regulating bone formation.. 11

1.4 Current treatment for bone reduction during aging (aged osteoporosis) 12

1.5 Osteoporosis: an age-associated bone loss disease with CKIP-1................................. 16

Part II Methodology and materials .. 18

2.1 Experiment design .. 18

2.1.1 Grouping and animal handling .. 18

2.2 Application of Micro CT in bone mass and trabecular micro-architecture evaluation .. 18

2.2.1 Protocol for micro CT scanning ... 18

2.2.2 Explanation for micro CT analysis parameters ... 19

2.3 Data analysis ... 23
Part III Results .. 24

3.1 Effects of CKIP-1 deletion on bone mineral density (BMD) .. 25

3.2 Effects of CKIP-1 deletion on bone volume fraction (BV/TV) .. 26

3.3 Effects of CKIP-1 deletion on connectivity density (Conn.D) 27

3.4 Effects of CKIP-1 deletion on trabecular thickness (Tb.Th) ... 28

3.5 Analysis of the microarchitecture of the distal femur from KO and WT groups
based 3-D reconstructed images ... 29

Part IV Discussion ... 31

Part V Conclusion and Future view .. 32

5.1 Conclusion ... 32

5.2 Future view ... 32

Part VI Reference .. 33
HONG KONG BAPTIST UNIVERSITY LIBRARY

Dissertation Release Form

Student No.: 14448580

Author: HE Bihui

Dissertation Title: Functional Role of CKIP-1 for Bone Formation Reduction During Aging: Micro CT analysis

Department/Programme: School of Chinese Medicine Hong Kong Baptist University

Degree: Master of Chinese Medicine

Date Awarded: November 2015

Declaration:

☑ I agree that my dissertation may be viewed by users, wholly or partially, in electronic format online through a secure network or Internet connection, while its print version be consulted in the University Library according to the circulation regulations currently in force. Furthermore, authorization is given to the University for reproduction and distribution of my dissertation, wholly or partially, in any format or by any means, for purposes of private study, educational use, scholarship or research. However, reproduction by individual users will be governed by the existing Hong Kong Copyright Ordinance.

Signature of Author:

Date: 12-06-2015

WM/OL/CL/cc
HONG KONG BAPTIST UNIVERSITY
Master of Chinese Medicine

THESIS ACCEPTANCE

DATE: June 13, 2015
(the date of final acceptance of the thesis after all revisions, if any)

STUDENT’S NAME: HE Bihui

THESIS TITLE: Functional Role of CKIP-1 for Bone Formation Reduction During Aging: Micro CT analysis

This is to certify that the above student’s thesis has been examined by the following panel members and has received full approval for acceptance in partial fulfillment of the requirements for the degree of Master of Chinese Medicine.

Chairman: Prof. ZHANG Ge

Panel Members: WANG Yanjuan & XU Gang

Chairman’s Signature:
Prof. ZHANG Ge Signature:

Principal Supervisor’s Signature:
Prof. ZHANG Ge Signature:

WM/OL/CL/cc