Abstract

Plants regulate many physiological processes in response to adverse environmental stresses. This study focused on the seed germination and seedling establishment stage and investigated the molecular signaling events when abiotic stresses, such as osmotic, water and temperature, were applied. Seeds of Arabidopsis, mutants or wild type, were used to identify the signaling components.

Cold-pretreatment (stratification) is widely used to break seed dormancy and improve germination rate. Stratification at 4°C significantly broke the seed dormancy of Arabidopsis in wild-type, cyp707a2, sleepy1 and sleepy1/cyp707a2, but not in ga3ox1. Stratification and exogenous ABA treatment strongly enhanced the expression and the activity of α-amylase in the freshly harvested seeds among the wild-type and those mutants, which have relatively high ABA content. Similarly, the expression of RGL2 and ABI5 were also substantially suppressed by stratification. These results suggest that stratification firstly leads to GA biosynthesis and unlocks the inhibition of RGL2 on the expression of α-amylase. Stratification also relieves the inhibition of ABA on the germination process but the inhibition of ABA on seedling development is not affected.

We have isolated an Arabidopsis mutant, dsptp1, which is hyposensitive to osmotic stress during seed germination and seedling establishment, indicated by exhibiting higher seed germination rate, lower inhibition in root elongation under osmotic stress, and more tolerance to drought compared with the wild type (Col0) plants. Osmotic stress and drought enhanced AtDsPTP1 expression in seed coats, the bases of rosette leaves and roots. Compared with the wild type, the dsptp1 mutant increased proline accumulation, reduced MDA content and ion leakage,
and enhanced antioxidant enzyme activity under osmotic stress. AtDsPTP1 regulated the transcript levels of various dehydration responsive genes, ABA biosynthesis and metabolic enzyme gene under osmotic stress, resulting in reduced accumulation of ABA in dsptp1 mutant plants than wild type in response to osmotic stress. AtDsPTP1 also mediated the ABA signaling pathway under osmotic stress by suppressing the expression of ABI1 and enhancing the expression of the positive regulators ABI3 and ABI5 in ABA signaling. These data suggest that AtDsPTP1 positively regulates ABA accumulation and signaling during seed germination and seedling establishment in Arabidopsis under osmotic stress.

To further investigate the regulation mechanism of DsPTP1 in osmotic stress and drought signaling, we analyzed the water holding capacity between wild type and dsptp1 mutant. The dsptp1 mutant exhibited enhanced water holding capacity compared to wild type under osmotic stress resulting from reduced water loss and increased relative water content, which shall contribute the osmotic and drought tolerance. To identify the signaling components, we investigated the activity of MAPKs under osmotic and drought stress and found that the DsPTP1 differentially regulates the activities of MAPK6 and a p38 MAPK, which is inferred as MAPK12 according to its molecular weight in Arabidopsis under osmotic and salt stress. However, there is no direct interaction between DsPTP1 and 20 MAPKs indicated by the results of the of specific interaction test. These results suggest that the differential regulation of MAPK6 and MAPK12 by DsPTP1 is indirect. In addition, we screened the interaction proteins of DsPTP1 under abiotic stress. Seventeen positive clones were acquired from the sequencing results. More work need to be done to confirmed the positive interactions and the
signaling cascades.

In summary, seed germination and seedling growth are closely regulated by environmental cues. This should be the result of evolutionary selection since successful new growth from the seed embryo depends on the sensitive perception of environmental conditions and effective regulation of many physiological processes that are involved. We have demonstrated that plant hormones, especially ABA, play central regulative roles during such regulations. Many other signaling components, such as protein kinases and phosphatases, are also involved. Identifying the detailed signaling pathways should be the focus of further research.
Acknowledgements

This work was performed in the Plant Laboratory of Prof. Zhang Jianhua at the Hong Kong Baptist University. My deepest gratitude goes first and foremost to Professor Zhang Jianhua, my principal supervisor, who has offered the excellent working conditions, constant encouragement, guidance and many communicated opportunities with specialists from mainland in China during my PhD time.

I am grateful to my co-supervisor Dr. Xia Yiji for his supports, guidance and care in experiments and daily lectures and all the other professors who ever taught me in the past three years.

I want to thank Hong Kong Baptist University and the Research Grant Council for a studentship and financial for my Ph.D. study. I feel grateful to the Department and graduate school secretaries Ms. Lau Pui Ling, Ms. Fion Chan Kwan and Mr. Lo Kam Fai for their help in life and my study. I give my sincere thanks to the laboratory technician Ms. Olivia Chau Ching Wah and Ms. Louise Ng Lai Ha for her help in technical support, ordering chemicals and experimental materials. I am also grateful to Mr. Ip Wang Kwong, Mr. Ma Kwok Keung, Mr. W.S. Chung, Ms. Lee, Eman Yee Man, Ms. Leung, Ka Wing for their patient technical assistance and help. I would like to express my gratitude to my friends and lab members who helped me during my Ph.D. time: Liu Yinggao, Ye Nenghui, Zhu Guohui, Jia Liguo, Shi Lu, Zhi Hui and A N M Rubaiyath Bin Rahman.

Last, but not least, I wish to express my gratitude to my beloved parents and my dear sister for their love, support, care and encouragement.
Table of Contents

Declaration ... i

Abstract ... ii

Acknowledgements ... v

Table of Contents ... vi

List of Tables .. xi

List of Figures ... xii

List of Abbreviations ... xv

Chapter 1 General Introduction .. 1

1.1 Seed germination .. 1

1.1.1 Development process of seed germination ... 1

1.1.2 Seed Germination and dormancy ... 4

1.1.3 Antagonism between ABA and GA during seed dormancy 5

1.1.4 ABA regulates the dormancy induction during seed maturation 6

1.2 Reversible protein phosphorylation ... 8

1.2.1 Mitogen-activated protein kinase (MAPK) ... 9

1.2.2 Protein phosphatase ... 13

1.3 Phytohormone and stress signaling ... 16

1.3.1 ABA ... 16

1.3.2 GA .. 17
1.4 Second messenger ...18
 1.4.1 ROS in abiotic stress ...18
 ROS scavengers. ...19
 1.4.2 Ca $^{2+}$..21
 1.4.3 IP3 ..22
 1.4.4 PA ..23
1.5 Transcriptional factors and stress responsive genes ..24
1.6 Abiotic stress ...25
 1.6.1 Osmotic stress ..25
 1.6.2 Salt stress ..28
 1.6.3 Low temperature (freezing) ..29
 1.6.4 Drought stress ...30
1.7 ABA signaling ..31
1.8 Summary and perspectives of research ...34

Chapter 2 Cold-pretreatment breaks seed dormancy by

unblocking the negative regulations of RGL2 and ABA on α-amylase ...36

2.1 Introduction ..36
2.2 Materials and Methods ...41
 2.2.1 Plant materials ..41
 2.2.2 T-DNA insertion line ...42
 2.2.3 Generation of CPY707A2 over-expressing line and cyp707a2/sleepy1
double mutant ...44
 2.2.4 Germination assay ...44
2.2.5 Extraction and determination of ABA ..44
2.2.6 Real-time RT-PCR analysis ..45
2.2.7 Measurement of α-amylase activity48
2.2.8 Accession Numbers ..48
2.3 Results ...48
 2.3.1 Cold-pretreatment decrease the inhibition of ABA on seed germination 48
 2.3.2 GA biosynthesis is essential in stratification regulated seed dormancy breaking ...54
 2.3.3 Regulation of α-amylase by ABA and GA under Cold-pretreatment58
 2.3.4 The role of RGL2 in GA and cold regulated α-amylase63
 2.3.5 The role of RGL2 in ABA regulated α-amylase66
 2.3.6 Cold pre-treatments block the regulation of RGL2 on α-amylase......68
2.4 Discussion ..74

Chapter 3 AtDsPTP1 positively regulates abscisic acid signaling in response to osmotic stress during seed germination and seedling establishment of Arabidopsis ...80

 3.1 Introduction ..80
 3.2 Materials and Methods ..82
 3.2.1 Plant materials and growth conditions82
 3.2.2 Stress and ABA treatments ..83
 3.2.3 Seed germination assays ..83
 3.2.4 Root elongation measurements ..83
 3.2.5 Histochemical analysis of GUS activity84
 3.2.6 Isolation of total RNA and quantitative real-time RT-PCR84
3.2.7 Antioxidant enzyme assays ... 85
3.2.8 Proline assays .. 86
3.2.9 MDA measurements .. 86
3.2.10 Ion leakage measurement ... 86
3.2.11 ABA measurement ... 87
3.2.12 Accession numbers .. 87
3.3 Results ... 88
3.3.1 Phenotypic analyses of the dsptp1 mutant 88
3.3.2 Overexpression of DsPTP1 decreases osmotic tolerance in Arabidopsis .. 91
3.3.4 Increased proline content and resistance to oxidative damage in dsptp1 plants ... 96
3.3.5 dsptp1 enhances expression of osmotic responsive genes 100
3.3.6 dsptp1 mutant reduces ABA content and suppresses ABA signaling pathway under osmotic stress ... 103
3.4 Discussion ... 108

Chapter 4 Regulation mechanism of DsPTP1 in abiotic stress signaling ... 113

4.1 Introduction ... 113
4.2 Materials and Methods ... 115
4.2.1 Plant materials ... 115
4.2.2 Water Loss assay ... 115
4.2.3 Relative water content assay .. 116
4.2.4 In-gel MAPK activity ... 116
4.2.5 Western-blot analysis ... 117
4.2.6 Testing Specific Two-Hybrid Interaction 118
4.2.7 Two-Hybrid Library Screening Using Yeast Mating 118
4.3 Results ... 118
4.3.1 dsptpl showed increased drought tolerance 118
4.3.2 dsptpl exhibits increased water holding capacity 120
4.3.3 DsPTP1 regulates the MAPKs activity in different patterns under osmotic and salt stress ... 122
4.3.4 Two MAPKs, p38, p44 MAPKs are differently activated by osmotic and salt stress ... 124
4.3.5 DsPTP1 has no direct interactions with 20 MAPKs 130
4.3.6 Screen the interaction proteins of DsPTP1 under abiotic stress 132
4.4 Discussion .. 136

Chapter 5 General Discussion .. 141

References .. 150