Abstract

To investigate how an infectious disease spreads, it is desirable to use the observed surveillance data to discover the underlying (often hidden) disease transmission networks. Previous studies have provided methods for inferring information diffusion networks in which each node corresponds to an individual person within the diffusion network. However, in the case of disease transmission, to effectively propose and implement intervention strategies, it is more realistic and reasonable for policy makers to study the diffusion patterns at a metapopulation level, that is, to consider disease transmission networks in which nodes represent subpopulations, and links indicate their interrelationships. Such networks can be useful in several ways: (i) to investigate hidden impact factors that influence epidemic dynamics, (ii) to reveal possible sources of epidemic outbreaks, and (iii) to practically develop and/or improve strategies for controlling the spread of infectious diseases. Therefore, this thesis addresses the problem of inferring disease transmission networks at a metapopulation level. A network inference method called NetEpi (Network Epidemic) is developed and evaluated using both synthetic and real-world datasets. The experimental results show that NetEpi can recover most of the ground-truth disease transmission networks using only surveillance data.
Acknowledgements

I would like to thank all the professors and colleagues who have helped me during my 6-year’s study in Hong Kong Baptist University.

In particular, I would like to thank my supervisor Prof. Jiming LIU. My research interest was initiated by his excellent teaching in my undergraduate courses. His inspiring guidance and constructive suggestions in my master’s studies had laid a solid foundation for my future work.

I would also like to thank Prof. ZHOU Xiao Nong, Dr. William Kwok Wai CHEUNG, Prof. YUEN, Pong Chi for their insightful advice and encouragement. Thanks also go to the departmental secretaries and technicians for their kind assistance.

I give my special thanks to my parents and my girlfriend He Jing for their persistent support throughout my studies.
Table of Contents

Declaration i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables vii

List of Figures viii

1 **Introduction** 1
 1.1 Overview and Objectives 1
 1.2 Contributions and Significance 5
 1.3 Outline of the Thesis 7

2 **Related Work** 9
 2.1 Information Diffusion Network Inference 11
 2.1.1 Information Diffusion Models 11
2.1.2 Link Prediction Problem ... 12
2.1.3 Diffusion Network Inference 13
2.2 Disease Transmission Networks 16
 2.2.1 Disease Transmission Models 16
 2.2.2 Disease Transmission over Networks 22
 2.2.3 Inference Based on Surveillance Data 28
2.3 Summary ... 34

3 Problem Statement .. 37
 3.1 Definitions ... 38
 3.2 Linear Transmission Model ... 42
 3.3 Network Inference Problem .. 44
 3.4 Summary ... 45

4 The Proposed Network Inference Method 46
 4.1 Basic Ideas ... 47
 4.2 Partial Correlation Network Construction 47
 4.2.1 Pearson Correlation Analysis 50
 4.2.2 First-Order Partial Correlation Analysis 51
 4.3 Back-Tracking Bayesian Learning 53
 4.3.1 Marginal Likelihood Function 53
 4.3.2 Expectation-Maximization Computation 55
 4.3.3 Back-Tracking Technique 56
 4.4 Discussions .. 56
4.4.1 Stopping Criteria .. 56
4.4.2 Computational Complexity of the Algorithm 58
4.5 Summary .. 59

5 Experiments .. 60

5.1 Experiments Based on Synthetic Data 61
 5.1.1 Experimental Setting 61
 5.1.2 Baseline Method 65
 5.1.3 Results ... 66
 5.1.4 Sensitivity Analysis 76

5.2 Experiments Based on a Real-world Dataset 93
 5.2.1 Dataset Description 93
 5.2.2 Experimental Setting 95
 5.2.3 Results ... 97

5.3 Summary ... 112

6 Conclusion and Future Work 114

6.1 Main Contributions 114

6.2 Future Work ... 115

Curriculum Vitae ... 129