Abstract

Crop domestication and subsequent breeding or directional selection have narrowed the genetic diversity of elite varieties whereas land races, ecotypes, wild relatives growing on native preferences still keep genetic diversities of stress tolerances. Rayada is such an exceptional ecotype, variant of typical deepwater rice, completely endemic to certain areas of Madhumati river tracts of Bangladesh and still shares some features of wild rices. Multiple physiological features of Rayadas are distinctly different from typical deepwater rice. In this PhD project, we have studied the specialty of Rayada rice and identified that Rayada has special tolerances to prolonged flood, submergence and cold along with longer root system and prompt recovery capacity after water stress. All these features make it as an elite resource of stress tolerance and might become a new focus of rice germplasm research.

Among all deepwater rices, Rayada is the only exception, having virtually no seed dormancy, but both physiological and molecular bases of this trait are completely unknown. We examined the non-dormant nature of Rayadas as a natural variant of deepwater rice. After comparing features of freshly harvested seeds of Rayada with those of typical deepwater rice variety, we identified several concerted features; for instance, less ABA content in freshly harvested seeds; faster ABA catabolism and enhanced ROS accumulation after imbibition. Moreover, after analyzing stepwise gene expressions of 32 bZIPs in seed germination, mild and severe water stresses among three extreme ecotypes including Rayadas together with homology search with reported genes, we identified OsbZIP84 as a candidate gene for the regulation of ABA catabolism in Rayada rice. ABA content and expression analysis of OsbZIP84 and ABA8oxs in four growth and developmental stages along with phenotyping of mutant revealed the function of OsbZIP84 in the dormancy regulation of Rayada rice.

Submergence tolerance during seed germination is one of the rare traits of rice, even among cereals. Except few physiological indications of tolerance, most other molecular signaling network is not known. We identified several positive and negative regulators of shoot development under submergence inducting the capacity of shoot development of Rayada rice under oxidative stress. We
successfully developed a condition supplemented with riboflavin and H₂O₂ where intolerant genotypes successfully developed shoot under submergence. However, induced shoot development was completely inhibited by glucose, ABA and mitochondrial complex IV inhibitor signifying ABA and glucose as negative regulators, whereas ROS, riboflavin and mitochondrial complex IV as positive regulators. Gene expression analysis of α-amylases revealed H₂O₂ supplementation mimicked aerobic gene expression pattern. Plausible mechanisms of riboflavin and H₂O₂ function in submergence tolerance were also discussed.

Finally, we isolated a novel mutant of Rayada variety with Kaladigha background and having four interesting phenotypes of practical implications. Mutant plant shows purple pigmentation throughout the plants organs along with dense and elongated trichomes on the adaxial leaf surface. In addition, the same mutant also shows high frequency of stigma exsertion. But ultimately, we observed that the mutant plant is completely sterile. The possible reason of the sterility was found being related to the stigma receptivity. Severe reduction of ROS accumulation in stigmas of mutant plant was observed after fluorescent H2DCF-DA staining. However, pollen grains are completely viable with normal shape and size. Interestingly, the fertility was partially restored after humidifying the panicles. Mutant progeny showed dense black coloration in seeds with significant reduction of grain weight. Moreover, it showed segregating ratio of 3:1 for purple pigmentation, suggesting single gene mutation nature. Other phenotypic features confirmed the mutant as a Rayada variety with Kaladigha background, not a seed contamination. After extensive data mining of these four phenotypes, we identified maize Lc gene with three similar phenotypes reported earlier excluding stigma exsertion, hence considered as candidate gene of this mutant. The gene expression of maize Lc homolog of rice, OsbHLH13, was exceptionally up-regulated in the purple mutant. Further studies of genetic characterization may open up the practical implications of this mesmerizing mutant.

In summary, Rayada is a primitive deepwater rice ecotype that can offer many traits and genetic resources that are badly needed in rice breeding for stress tolerance and the time is mature to do the more detailed research with rapid advances in genome research weaponry.
Acknowledgements

I would like to express my deepest gratitude to my principal supervisor, Professor Jianhua Zhang for his supervision, encouragement, supports and inspiration over the past three years. Without his support, guidance and care, I could never run my projects as well as my life smoothly in abroad. If any credit earns this thesis, naturally it belongs to him too.

Similarly, I want to thank my co-supervisor, Professor Yiji Xia for his advice, guidance as well as research assistantship he offered me. Lucky me, have such two notable scientists as my supervisors. Special thanks to our Dean of Science, Professor Tang Tao, for his generosity as well as arrangement of prayer room after my request.

Certainly, thanks to all of my teachers of Biology Department, HKBU, especially to Chris Wong, Head of the department. All of you are so kind and cooperative. I would remember Professor Ricky Wong ever, for his cordial behavior, I met him in my very first day of HKBU, apart my supervisor.

Nothing would satisfy me unless I thank Hong Kong Baptist University as well as the Research Grant Council for studentship of my PhD tenure. Sincere gratitude to all of the scientific officers of Biology department who helped me in different ways in my studies, especially to Ms. Olivia Chau Ching Wah and Louise Lai Ha Ng. Similarly, thanks to Ho Yee, Fion, Pui Ling, Lo Kam Fai for their cooperation and support.

My thesis completion would be impossible without the help my lab mates. I must remember you all. You were too kind to me, made my life easy abroad, I am grateful to you all, especially to Dr. Ye Nenghui, Jia Liguo, Shi Lu, Liu Rui, Zhi Hui. All others including Professor Xia’s group are also acknowledged for their favor and attention.

Hey, Larry! I wished to thank you some three years ago; Google was my dependence since the beginning of the study. While I was alone as an alien in the Sino Island, you played music for me. I was never been to library last three years, only because of your awesome services of Google scholar, Note, YouTube and
certainly Google itself. I would be miser if I do not acknowledge you with my gratefulness.

It’s my privilege to acknowledge the best scientists of the world, the farmers, especially rice farmers who kept Rayada rice still growing in the field. I just revealed scientifically whatever you know since long.

Finally, I do dedicate my thesis to my beloved parents, my lovely wife and to my two little angels: Rudaba & Namira. Without your love, affection, encouragement, spirit I would never finish it.
Table of Contents

Declaration i

Abstract iii

Acknowledgements v

Table of Contents vii

List of Figures and Tables xii

List of Abbreviations xv

Chapter 1 Introduction 1

1.1 General Introduction 1

1.2 Rice ecosystems 1

 1.2.1 Irrigated lowland ecosystem 2

 1.2.2 Rainfed lowland ecosystem 2

 1.2.3 Upland rice ecosystem 3

 1.2.4 Flood-prone ecosystem 3

 1.2.4.1 Rayada ecotype 4

1.3 Molecular mechanisms of adaptation to flood-prone area 5

 1.3.1 Prolonged flood with partial submergence 5

 1.3.2 Flash flood of complete submergence 6

1.4 Seed dormancy and germination: two interrelated complex processes 7

1.5 ABA 8’-hydroxylases: key player after imbibition 11

1.6 ABA signaling pathway 12

1.7 ABA responsive transcription factors 13

 1.7.1 bZIP transcription factors 14

 1.7.2 bZIPs in rice 15

1.8 Crosstalk between ROS and ABA signaling 16

1.9 Seed germination under submergence 17

1.10 Anthocyanin biosynthesis and trichome development: linked processes 19

1.11 Objectives of this study 22
Chapter 2 Rayada specialty: the forgotten resource of elite features of rice

2.1 Introduction
2.2 Deepwater rice in Bangladesh
2.3 Types of deepwater rice in Bangladesh
 2.3.1 Rayada rice
2.4 Distribution of Rayada
2.5 Yearlong life cycle
2.6 Elongation ability of Rayada
2.7 Submergence tolerance
2.8 Seed dormancy
2.9 Cold tolerance
2.10 Longer root systems of Rayada
2.11 Photoperiod sensitivity
2.12 Quick recovery after water stress
2.13 Origin and evolution of Rayada
2.14 Rayada: the forgotten resource of elite features of rice

Chapter 3 OsbZIP84 is involved in seed dormancy regulation of Rayada rice through ABA catabolism

3.1 Introduction
3.2 Materials and methods
 3.2.1 Plant materials
 3.2.2 Growth conditions and stress treatments
 3.2.3 Microarray data analysis
 3.2.4 RNA extraction and quantitative real-time (qRT)-PCR
 3.2.5 Extraction and measurement of ABA
 3.2.6 ROS staining and confocal laser scanning microscopy
 3.2.7 Statistical analysis
3.3 Results
 3.3.1 Lack of dormancy of freshly harvested Rayada seeds
 3.3.2 ROS accumulation in freshly harvested Rayada seeds after imbibition
 3.3.3 Differential expressions of selected OsbZIPs in seed
4.3.2 Rayada seedlings: more tolerant to composite stress 87
4.3.3 Augmentation of seed germination by hydrogen peroxide 89
4.3.4 Shoot development of Rayadas under composite submergence stress 90
4.3.5 Coatless Rayada seeds unable to develop shoot under submergence 92
4.3.6 Riboflavin induces shoot development under submergence 94
4.3.7 Nitric oxide: not involved in shoot development under submergence 95
4.3.8 Both exogenous ABA and glucose restrict shoot development under submergence 96
4.3.9 Mitochondrial complex IV inhibition: restrict seed germination under submergence 98
4.3.10 H$_2$O$_2$ affects carbohydrate metabolism under submergence 99

4.4 Discussion 100
4.4.1 Rayada rice: is elixir of stress tolerances? 100
4.4.2 Riboflavin richness of red rice 101
4.4.3 Riboflavin: a signaling compound 101
4.4.4 How might riboflavin induce shoot development in submergence? 102
4.4.5 Hidden player masked riboflavin 103
4.4.6 Involvement of ABA and glucose signaling 104

Chapter 5 A novel natural mutant of Rayada rice, plausibly in OsbHLH13, shows multiple phenotypes with potential use in hybrid seed technology 107

5.1 Introduction 107
5.1.1 Stigma exsertion 107
5.1.2 Morphological markers 108
5.1.3 Trichome development 108
5.1.4 Anthocyanin and trichome development: linked processes 109

5.2 Materials and methods 110
5.2.1 Plant materials and growth condition 110
5.2.2 Determination of total anthocyanin content 110
5.2.3 RNA extraction and real-time PCR analysis
5.2.4 Estimation of trichome density and distribution
5.2.5 Determination of stigma exsertion
5.2.6 Pollen viability assay
5.2.7 Determination of stigma receptivity
5.2.8 Humidification of panicles
5.2.9 ROS staining and confocal laser scanning microscopy

5.3 Results
5.3.1 Phenotypic characterization of natural purple mutant
 5.3.1.1 Purple pigmentation
 5.3.1.1.1 Anthocyanin content
 5.3.1.2 Profuse and elongated trichomes
 5.3.1.3 Stigma exsertion
 5.3.1.4 Sterility of purple mutant
5.3.2 Stigma receptivity: plausible cause of sterility
5.3.3 Reduced ROS accumulation in mutant stigma
5.3.4 Partial restoration of fertility
5.3.5 Phenotype of purple progeny
5.3.6 Candidate gene of theses phenotypes
5.3.7 Expression analysis of OsbHLH13

5.4 Discussion
5.4.1 Natural mutation, not seed contamination
5.4.2 Sterility and reduced ROS accumulation of stigmas: linked together
5.4.3 Humidity and sterility
5.4.4 Black colored but reduced grain weight
5.4.4 Selection of OsbHLH13 as candidate gene

Chapter 6 General Discussion and Conclusion
References