Abstract

Anti-estrogen drugs such as Tamoxifen and Raloxifene are widely prescribed for breast cancer patients. While they are effective, they also have serious side effects. Alternative drugs are therefore being developed. In the drug discovery process, the in vitro binding of estrogen receptors and lead compounds were studied. The binding strength was conventionally quantified in terms of equilibrium dissociation constants (K_D). However, the binding kinetic rates and especially off-rates (k_{off}) were recently shown to be better indicators of drug potency. In this thesis, we identified a few dietary estrogens as candidate lead compounds. We studied the binding of full-length human recombinant ERα with these dietary estrogens. In particular, we measured for the first time their binding kinetics rate constants. We also measured the change in the receptor-ligand binding kinetics upon its recruitment of co-activators, as a means to gauge agonist/antagonist propensity of the ligand. Our results showed that the following dietary estrogens, α-Zearalenol, Zearalenone, and Coumestrol bind favorably to the estrogen receptor alpha.
Acknowledgements

Firstly, I would like to thank Prof N.H. Cheung for guiding my research in the past years. Since day one, I have been deeply impressed by his enthusiasm in teaching physics, his passion in doing research and his interdisciplinary knowledge. He is kind and gentle, and provides lots of opportunity for me to do research. He teaches me how to understand a scientific question deeply and to find the simplest answer. It is such great fortune and enjoyment that I can be under his supervision.

Second, I would like to thank Dr. Dick K.C. Kwok for helping and guiding me through my research. I am grateful to have a mentor and senior like him. I thank Mr. Y.H. Yeung for the technical support. I also thank Dr. Cody W.L. Yip, Dr. Ben K.M. Yeung, Mr. K.W. Yiu, Mr. Sodi S.K. Lau, Dr. Bruno Y. Cai and Dr. P.C. Chu for being around and making the laboratory a wonderful place.

Last but not the least, I like to express my deep gratitude to my parents and family members. They have provided their endless support. This work constituted an important part of my life.
Table of Contents

Declaration ..i

Abstract ..ii

Acknowledgements ..iii

Table of Contents ..iv

List of Tables ...viii

List of Figures ...x

List of Abbreviations ...xvii

Chapter 1 Introduction ..1

Chapter 2 Background ..3

2.1 Breast cancer cell proliferation mechanism3

2.1.1 Overview and general picture3

2.1.2 The role of ER ..4

2.1.3 The role of estrogen ..7

2.1.4 Coactivator structure and its recruitment8

2.2 Anti-estrogen drugs ..10
2.2.1 Tamoxifen (TAM) ..10
2.2.2 Raloxifene (RAL)11

2.3 Dietary estrogens ...12

2.3.1 Resveratrol (RESV)13
2.3.2 Zearalenone (ZEA) and α-Zeararlenol (α-ZEA)13
2.3.3 Coumestrol (COUM)14
2.3.4 Apigenin (APIG) ..14

2.4 Binding kinetics ...16

2.5 In-vitro binding assays18

2.5.1 Fluorescence assays18
2.5.2 Total internal reflection fluorescence (TIRF)19
2.5.3 Fluorescence Polarization (FP)20

2.6 Agonist / Antagonist mode of the ligands22

2.6.1 Dye-labeled coactivator method22
2.6.2 R-L stabilization upon coactivator recruitment23

Chapter 3 Methodology ..24

3.1 Experimental set-up24

3.2 Flow cell fabrication and fluidics26

3.2.1 Flow cell fabrication27
3.2.2 Fluidics ..28

3.3 Receptor tethering ...29

3.3.1 Coating with Poly-L-lysine (PLL)29
3.3.2 Immobilization of the primary and the secondary antibody ..29
3.3.3 Receptor preparation and tethering30
3.4 Ligand and peptide preparation32
3.5 Real-time data capture and display33
3.6 Data runs ..35
3.6.1 Kinetics data capture without co-activators35
3.6.2 Kinetics data capture with co-activators36
3.7 Data analysis – From fluorescence anisotropy to bound fraction ..37
3.8 Kinetics modeling – Without coactivator38
3.9 Kinetics modeling – With coactivator40

Chapter 4 Results and Discussion ..41
4.1 Binding kinetics of ERα with standard ligands41
4.1.1 Binding kinetics of the fluorescent ligand F and ERα42
4.1.2 Binding kinetic of standard dark ligands and ERα44
4.2 Binding kinetics of ERα with dietary estrogens49
4.3 Kinetic rates and dissociative half-lives of dietary estrogens52
4.4 Correlation between the chemical structure and dissociative half-life ...54
4.5 From agonist to antagonist ...55
4.6 Binding kinetics of ERα and standard ligands in the presence of coactivators ..59
4.6.1 Binding kinetics of ERα and F in the presence of D2259
4.6.2 Binding kinetics of ERα and standard dark ligands in the presence of D22 ..60

4.6.3 Binding of ERα and standard dark ligands in the presence of SRC-1 ...64

Chapter 5 Summary ...67

List of References ...69

Curriculum Vitae ...75