Molecular Design of New Small Molecules and Polymers: Synthesis, Characterization and Application in Organic Solar Cells

Liu Xinli

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Professor WONG Wai Yeung, Raymond

Hong Kong Baptist University

September 2013
Abstract

The molecular design, synthesis, spectroscopic and photophysical characterization of a new series of organic small molecules and transition metal-containing polymers incorporating different π-conjugated chromophores are discussed. The applications of some of these compounds in bulk heterojunction (BHJ) organic solar cells are also outlined.

Chapter 1 contains a brief overview on the background of organic solar cells, their structures and performance in solution-processed organic BHJ devices.

Chapter 2 presents the synthetic methodology and characterization of a series of new dipyrrin-based materials and their application in organic solar cells. In this section, four metal-based metallopolymers for organic solar cells have been designed, synthesized and two of them have been fabricated for BHJ organic solar cells. Through the alternation of different metal ions and boron element in the same dipyrrin framework, a series of dipyrrin-based metal complexes and BODIPY-containing compounds have been synthesized. Electrochemical analysis and DFT calculations proved that M4 with BODIPY-based structure is more efficient in optimizing the HOMO-LUMO energy level which further increases the V_{oc} value.

A full account of the preparation, characterization, photophysical and thermal
properties of a new series of benzo[1,2-b:4,5-b’]dithiophene (BDT),
cyclopenta[2,1-b:3,4-b’]dithiophene (CPT) and triphenylamine (TPA) centered small
molecules are presented in chapters 3, 4 and 5, respectively. Different
acceptor-donor-acceptor (A-D-A) based materials were prepared and employed in
organic solar cells in order enhance the power conversion efficiency (PCE) of the
devices. Some of the materials have been found to show higher PCEs of up to 3.91%.
Given the excellent solution-processability as well as performance advantage, this
work provides us a feasible strategy to develop low-cost and high PCE materials in
solar cell applications, which would help small molecular organic solar cells to reach
a level of practical applications.

In chapter 6, four low-bandgap Pt-containing polymers were synthesized and
characterized by a variety of techniques. Among them, the largest \(\lambda_{\text{onset}} \) of 699 nm in
solution and \(\lambda_{\text{onset}} \) of 736 nm in the thin film of P6 were observed and the
corresponding energy gap \(E_g \) was estimated to be 1.77 eV and 1.68 eV, respectively.
After evaluating these oxidation and reduction potentials, P6 also showed the smallest
band gap of 1.65 eV with the corresponding HOMO and LUMO energy levels of
-5.17 eV and -3.52 eV, respectively. Also, the molecular weights of these polymers
were examined by the GPC method. The highest \(M_n \) of 24.0 kDa and \(M_w \) of 50.4 kDa
with the PDI of 2.10 were observed in P8.
Chapter 7 and 8 present the concluding remarks and the experimental details of the work described in Chapters 2-6.
Table of Contents

Declaration i
Abstract ii
Acknowledgements v
Table of Contents vii
List of Tables xiv
List of Figures xvi
List of Schemes xxii
List of Abbreviations and Symbols xxv
Formula Index xxviii

Chapter 1 Introduction 1

1.1 Organic Solar Cells 1

1.1.1 Background 1

1.1.2 Overview of Organic Semiconductors 2

1.1.3 Operational Principles of Organic Solar Cells 4

1.1.3.1 Exciton Generation by Absorption of Sunlight 5

1.1.3.2 Exciton Diffusion and Exciton Dissociation 7

1.1.3.3 Charge Transport 8

1.1.3.4 Charge Collection at Electrodes 10
3.2 Synthesis

3.2.1 Synthesis of BDT Unit

3.2.2 Synthesis of BDT Based Small Molecules \textbf{M5-M9}

3.2.3 Synthesis of BDT Based Small Molecules \textbf{M10-M12}

3.2.4 Synthesis of BDT Based Small Molecules \textbf{M13-M15}

3.3 Spectroscopic Characterization of \textbf{M5-M15}

3.3.1 ^1H and ^{13}C NMR Spectroscopy of \textbf{M5-M15}

3.4 Photophysical Properties of \textbf{M5-M15}

3.5 Electrochemical Properties of \textbf{M5-M15}

3.5.1 Electrochemical Properties of \textbf{M5-M9}

3.5.2 Electrochemical Properties of \textbf{M10-M12}

3.5.3 Electrochemical Properties of \textbf{M13-M15}

3.6 Theoretical Studies of \textbf{M5, M10, M13, M14 and M15}

3.7 BHJ Solar Cell Performance of \textbf{M5, M10, M13-M15}

3.8 Conclusions and References

\textbf{Chapter 4} Synthesis and Characterization of Cyclopenta[2,1-\textit{b}:3,4-\textit{b'}]dithiophene (CPT)-Based Small Molecules for Solution-Processed Organic Solar Cells
4.1 Introduction

4.1.1 CPT-Based Conjugated Polymers and Small Molecules

4.2 Synthesis

4.2.1 Synthesis of CPT-Based Small Molecules M16-M19

4.2.2 Synthesis of CPT-Based Small Molecule M20

4.2.3 Synthesis of CPT-Based Small Molecules M21 and M22

4.3 Spectroscopic Characterization of M16-M22

4.3.1 1H and 13C NMR Spectroscopy of M16-M22

4.4 Photophysical Properties of M16-M22

4.5 Electrochemical Properties of M16-M22

4.5.1 Electrochemical Properties of M16-M19

4.5.2 Electrochemical Properties of M20-M22

4.6 Theoretical Studies of M21 and M22

4.7 BHJ Solar Cells Performance of M21 and M22

4.8 Conclusion and References

Chapter 5

Synthesis and Characterization of Star-Shaped Small Molecules with Triphenylamine Core for Solution-Processed Organic Solar Cells
5.1 Introduction 211

5.1.1 Triphenylamine (TPA)-based Small Molecules 211

5.2 Synthesis 215

5.2.1 Synthesis of M23 and M24 215

5.2.2 Synthesis of M25 and M26 218

5.3 Spectroscopic Characterization of M23-M26 222

5.3.1 1H and 13C NMR Spectroscopy of M23-M26 222

5.4 Photophysical Properties of M23-M26 227

5.5 Electrochemical Properties of M23-M26 229

5.6 Theoretical Studies of M25 and M26 233

5.7 Conclusion and References 236

Chapter 6 Synthesis and Characterization of New Metallopolyyne Polymers for Solution-Processed Organic Solar Cells 241

6.1 Introduction 241

6.2 Synthesis 244

6.2.1 Synthesis of Pt-Containing Polymers P5-P8 246

6.3 Spectroscopic Characterization of P5-P8 251

6.3.1 1H and 13C NMR Spectroscopy of P5-alkyne-P8-alkyne 251
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Photophysical Properties of P5-P8</td>
<td>256</td>
</tr>
<tr>
<td>6.5</td>
<td>Electrochemical Properties of P5-P8</td>
<td>259</td>
</tr>
<tr>
<td>6.6</td>
<td>GPC Analysis of P5-P8</td>
<td>261</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusion and References</td>
<td>264</td>
</tr>
</tbody>
</table>

Chapter 7
Concluding Remarks and Future Work
268

Chapter 8
Experimental Details
272

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Experimental Details for Chapter 2</td>
<td>272</td>
</tr>
<tr>
<td>8.2</td>
<td>Experimental Details for Chapter 3</td>
<td>278</td>
</tr>
<tr>
<td>8.3</td>
<td>Experimental Details for Chapter 4</td>
<td>293</td>
</tr>
<tr>
<td>8.4</td>
<td>Experimental Details for Chapter 5</td>
<td>299</td>
</tr>
<tr>
<td>8.5</td>
<td>Experimental Details for Chapter 6</td>
<td>302</td>
</tr>
</tbody>
</table>

Curriculum Vitae
306