Novel Ladder-type Oligo(ρ-phenylene)s for Highly Efficient
Multiphoton Absorption and Fused Aromatic-Based Copolymers
for Optoelectronic Applications

GUO Lei

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. Wong Man Shing Ricky

Hong Kong Baptist University

November 2012
Abstract

To probe the structure-multiphoton property relationship and develop efficient multiphoton absorbers for potential applications, several novel series of well-defined two-dimensional (2D) and three-dimensional (3D) ladder-type oligophenylenes, including linear and symmetrically endcapped diphenylamine derivatives, namely \((L)-\text{Ph}(n)-\text{NPh}\) \((n = 3-8)\); linear and non-endcapped derivatives, namely \((L)-\text{Ph}(n)\) \((n = 3-5)\); star-shaped ladder-type derivatives, namely \(\text{N}(\text{TL})-\text{Ph}(3)-\text{NPh}\), \(\text{N}(\text{TL})-\text{Ph}(3)-\text{CBZ}\), \(\text{TA}(\text{TL})-\text{Ph}(3)-\text{NPh}\) and \(\text{N}(\text{TL})-\text{Ph}(3)-\text{TAZ}\), have been designed and synthesized. In addition, new fused aromatic-based D-A copolymers derived from 5,6-dialkynaphthodithiophene (NDT) and thieno[3,4-c]pyrrole-4,6-dione (TPD), namely PNDTTPD, PNDTTPDT-1, PNDTTPDT-2 and PNDTTPDT-3, have been designed and synthesized via a convergent route. All the newly synthesized molecules were fully characterized with \(^1\text{H}\) NMR, \(^{13}\text{C}\) NMR, HRMS, elemental analysis or GPC and found to be in good agreement with the desired structures.

The chemical and physical properties of these newly synthesized 2D and 3D ladder-type oligophenylenes were investigated including linear optical properties such as UV-vis absorption, emission and fluorescence quantum yield in different solvent; nonlinear optical properties involving power dependent fluorescence intensity and multiphoton absorption (MPA) cross-section, MPA induced lasing characteristics as well as thermal stability. It was demonstrated that novel linear
D-π-D quadrupolar molecules showed great potential for various practical MPA applications. Furthermore, the optical and electrochemical properties of novel fused aromatic–based D-A PNDTPPD and PNDTPPDTs copolymers were investigated by UV-vis absorption in both solution and thin-film, cyclic voltammetry, gel permeation chromatography and thermal stability. A preliminary result of organic field-effect transistor (OFET) study showed that these copolymers would be able to utilize for applications of OFETs and organic photovoltaic cells (OPVs).

The molecular structures of the newly developed molecules, oligomers and polymers are showed as follows:
(L)-Ph(3)

(L)-Ph(4)

(L)-Ph(5)

(L)-Ph(4)-NPh

(L)-Ph(5)-NPh

(L)-Ph(3)-NPh

(L)-Ph(6)-NPh
N(TL)-Ph(3)-CBZ
R = C_{10}H_{21}

N(TL)-Ph(3)-TAZ
R = C_{10}H_{21}
TA(TL)-Ph(3)-NPh

R = C_{16}H_{21}
Acknowledgements

First of all, I would like to express my deepest and sincerest gratitude to my principal supervisor Prof. Ricky M. S. Wong for his genius ideas, inspiring guidance and continuous encouragement throughout my research work. What I have learned from him is not only the professional knowledge but also the energetic attitude toward research.

I would like to express my appreciation to Prof. K. W. Cheah, Dr. Haihua Fan and Dr. King Fai Li (Department of Physics and Institute of Advanced Materials, HKUB) for the research of MPA-induced photonic properties and valuable suggestions toward my thesis.

I would like to give my special thanks to my research group members: Prof. Pingfang Xia, Dr. Weifeng Zhang, Dr. Wanggui Yang, Dr. Xiaohua Sun, Mr. Bao Wang, Mr. Zhaoguang Li, Dr. Xiaqin Zhang, Ms. Yibei Lin. Ms. Xuyan Ma, Mr. Kai Zhang for their continuous help and supports. I’d also like to thank all the staff and technicians in the Department of Chemistry, Hong Kong Baptist University.

I will also specially appreciate my parents, my family members and all my friends for their continuous support.

Finally, I would acknowledge the Hong Kong Research Grant Council, Hong Kong Baptist University and Institute of Molecular Functional Materials for financial support for this work.
Table of Contents

Declaration………………………………………………………………………………...i
Abstract………………………………………………………………………………...ii
Acknowledgements……………………………………………………………………viii
Table of Contents…………………………………………………………………………ix
List of Figures…………………………………………………………………………...xii
List of Tables…………………………………………………………………………...xvi
List of Schemes…………………………………………………………………………...xvii
List of Abbreviations and Symbols………………………………………………….xviii

Chapter 1 Introduction to the Development of Multiphoton Materials

1.1 Background…………………………………………………………………………1
1.2 Basic Concepts and Descriptions of Multiphoton Absorption (MPA)………..3
1.3 Some Essential Considerations for MPA Molecular Design………………….8
1.4 Molecular Design for Small Organic 2PA System…………………………..10
 1.4.1 Dipolar Chromophores…………………………………………………..11
 1.4.2 Quadrupolar Chromophores…………………………………………....13
 1.4.2.1 Stilbene Derivatives………………………………………………….13
 1.4.2.2 Fluorene and Dihydrophenanthrene Derivatives………………….15
 1.4.2.3 Anthracene Derivatives………………………………………………17
 1.4.2.4 Heterocyclic Ring as the Conjugation Bridge…………………....19
 1.4.2.5 Pyrrole, Thiophene and Squaraine Derivatives…………………...20
 1.4.3 Octupolar Molecules……………………………………………………..22
 1.4.4 Three-Dimensional [2.2]Paracyclophanes and Multi-Annulene Systems…………………………………………………………………………………………………24
 1.4.5 Porphyrin Derivatives……………………………………………………..26
1.5 Measurement of 2PA Cross-Section……………………………………………27
1.6 Some Novel Materials for 3PA and Higher Photon Absorption………………29
1.7 Perspectives………………………………………………………………………32
1.8 References………………………………………………………………………33
Chapter 2 Multiphoton Induced Up-Converted Blue Photoluminescence and Lasing of Linear Ladder-Type Oligo(p-phenylene)s

2.1 Introduction ... 40
2.2 Synthesis .. 45
2.3 Results and Discussion ... 51
 2.3.1 Thermal Properties .. 51
 2.3.2 Linear Optical Properties .. 51
 2.3.3 The Multiphoton Absorption and Lasing Property 55
2.4 Conclusions ... 63
2.5 Experimental ... 64
2.6 References .. 88

Chapter 3 Multiphoton Induced Up-Converted Blue Photoluminescence of Star-Shaped Ladder-Type Oligo(p-phenylene)s

3.1 Introduction ... 92
3.2 Synthesis .. 97
3.3 Results and Discussion ... 101
 3.3.1 Thermal Properties .. 101
 3.3.2 Linear Optical Properties .. 101
 3.3.3 Nonlinear Optical Properties .. 104
3.4 Conclusions ... 109
3.5 Experimental ... 109
3.6 References .. 122

Chapter 4 Fused Aromatic-based Copolymers for Optoelectronic Applications

4.1 Introduction ... 125
4.2 Novel \(\pi \)-Conjugated Polymers for Thin-Film Transistor Applications 126
 4.2.1 \(p \)-Type Fused-Aromatic Copolymer Semiconductors 128
 4.2.2 \(n \)-Type Fused-Aromatic Copolymer Semiconductors 130
4.3 Novel \(\pi \)-Conjugated Polymers for Bulk Heterojunction Solar Cell
Applications..131

4.3.1 Rational Design of Conjugated Polymers for Photovoltaic Cells....133
4.3.2 Prevailing Donor and Acceptor Units Used to Construct D-A Polymers..134

4.4 Novel Fused Aromatic D-A Copolymers Based on Naphthodithiophene and Thieno[3,4-c]pyrrole-4,6-dione...137

4.4.1 Synthesis..139
4.4.2 Results and Discussion..142

4.5 Conclusions..147
4.5 Experimental..148
4.6 References..161

Chapter 5 Concluding Remarks...170

Appendix I 1H NMR Spectra of Selected Novel Synthesized Compounds...173

Appendix II 13C NMR Spectra of Selected Novel Synthesized Compounds...182

Appendix III HRMS Spectra of Selected Novel Synthesized Compounds...191

Curriculum Vitae..197