Investigation of the Role of GRP78 and the Potential Therapeutic use of Radix Astragali in Diabetic Complications

WONG Pui Kwan, Daniella

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

Principal Supervisor: Dr. YUE Kin Man, Kevin

Hong Kong Baptist University

October 2012
ABSTRACT

Diabetes mellitus (DM) is one of the most prominent chronic diseases globally. It is characterized with high blood glucose level and the development of series life-threatening vascular complications such as the cardiovascular and cerebrovascular diseases. It imposed significant healthcare burden in every country. However, currently prescribed therapeutic drugs did poor work in prevention and management of diabetic complications and that the complicated regulatory networks involved in the pathology of diabetes are still unclear. Hence, unraveling the underlying mechanisms and new potential markers of DM and its complications is of great importance for the control of the disease. The study was aimed to (a) investigate novel pathways or markers involved in diabetic macrovasculopathy and diabetic cerebrovasculopathy. (b) examine the potential beneficial effects of Radix Astragali (RA) in diabetic cerebrovasculopathy.

For the investigations in diabetic macrovasculopathy, 2-DE analysis results showed a total of 8 dysregulated proteins found in high glucose treated vascular smooth muscle cell (VSMC) in comparison to normal glucose treated VSMC for 21 days. GRP78, which was found significantly downregulated, is the interested protein of this study for further investigations. This result was confirmed in later experiments that both mRNA and protein levels of GRP78 were depressed after 21 days high glucose treatment in VSMC. Time course study of the alternation of GRP78 expression revealed that GRP78 was transiently upregulated at day 3 of high glucose treatment in VSMC and later on decreased after 15 days of high glucose incubation. Additionally, the mRNA levels of GRP78 in the aorta of
STZ-induced type 1 diabetic rats were also shown to be attenuated at the 8th week and 12th week of diabetes induction.

For the study of diabetic cerebrovasculopathy, it was demonstrated that high glucose conditions promoted astrocytes reactivity in c6 glioma cells, primary rat astrocytes and in the hippocampus of type 1 diabetic mice. Both total methanol extract of RA (TRAE) and enriched saponins methanol extract of RA (ERAE) showed alleviating effects on high glucose-induced astrocytes activation on reducing the GFAP expression level. Additionally, GRP78 expression was downregulated by high glucose as shown in both in vitro and in vivo models. Moreover, longer incubation with high glucose significantly reduced phosphorylation of Akt in the c6 glioma cells. Apart from GRP78, GRP94, calreticulin and calnexin mRNA expression levels were also attenuated. Additionally, high glucose triggered ROS production may partly contributed to the decreased level of GRP78. Furthermore, it was revealed that GRP78 was related to the regulation of the inflammatory cytokines, IL-6 and TNF-α, for which these cytokines were found upregulated in activated astrocytes. Lastly, PCR array analysis results revealed significant downregulation of Igf2 in the hippocampus of STZ-induced type 1 diabetic rats which may be associated with AD pathology.

In conclusion, GRP78 is well demonstrated to participate in both diabetic macrovasculopathy and diabetic cerebrovasculopathy. More importantly the depleted GRP78 level may be connected with subsequent increased oxidative stress, dysregulated insulin signaling and activation of inflammatory process as indicated in the pathogenesis of
diabetic complications. Besides, current data may suggest RA as a potential therapeutic
drug in against astrocytes dysfunction.

(507 words)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES AND TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 Introduction 1

1.1 Diabetes 1

1.1.1 Definition of diabetes 1

1.1.2 Epidemiology 1

1.1.3 Types of diabetes 2

1.1.4 Risk factors 3

1.1.5 Animal models of studying diabetes 3

1.2 Diabetic complications 4

1.2.1 Classifications of diabetic complications 4

1.2.2 Diabetic macrovasculopathy and cardiovascular disease 5

1.2.3 Diabetic microvasculopathy and neurodegeneration 6

1.3 Mechanisms of diabetic complications 7

1.3.1 Oxidative stress pathway 7

1.3.2 Polyol pathway 8

1.3.3 Advanced glycation end-product (AGE) pathway 9

1.3.4 Protein kinase C (PKC) pathway 10
1.3.5 Hexosamine pathway

1.4 ER stress

1.4.1 ER stress and unfolded protein response (UPR)

1.4.2 ER stress in diabetes and diabetic complications

1.5 ER Chaperone regulation in diabetes and diabetic complications

1.6 Medications for diabetic complications

1.6.1 Medications of western medicine

1.6.2 Traditional Chinese herbal medicine

1.7 Role of vascular smooth muscle cell in diabetic macrovasculopathy

1.8 Role of astrocytes in diabetic microvasculopathy

1.9 Proteomic study

1.9.1 History and background of proteomics

1.9.2 Principles of proteomics using 2-DE/MALDI-TOF-MS approach

1.9.3 Applications of 2-DE/MALDI-TOF-MS proteomics approach

1.9.4 Limitations of 2-DE/ MALDI-TOF-MS proteomics approach

1.10 Research hypothesis

1.11 Research plan and objectives

1.11.1 To examine the new potential pathological markers and involvement of ER stress in VSMC cultured under long term high glucose condition and in aorta of STZ-induced type 1 diabetic rats.

1.11.2 To examine the involvement of ER stress in c6 glioma cells treated with high glucose condition as the in vitro model and in hippocampus of STZ-induced type 1 diabetic mice as the in vivo model.
1.11.3 To evaluate the potential beneficial effects of the methanol extract of RA in against high glucose-induced astrocytes activation in c6 glioma cell as the *in vitro* model and in hippocampus of STZ-induced type 1 diabetic mice as the *in vivo* model.

1.11.4 To determine the correlation of the expression changes of major ER chaperone-GRP78 with the high glucose-induced astrocytes activation in primary rat astrocytes.

1.11.5 To examine possible alternated gene expression related to AD pathogenesis in hippocampus of STZ-induced type 1 diabetic rats.

CHAPTER 2 Materials and Methods

2.1 Chemicals and antibodies

2.2 Preparation and analysis of methanol extraction of Radix Astragali (Chapter 5)

2.2.1 Preparation of the methanol extract of Radix Astragali

2.2.2 Analysis of the methanol extract of Radix Astragali

2.3 Cell culture and treatment

2.3.1 VSMC cell culture and treatments (Chapter 3)

2.3.2 C6 glioma cell culture and treatments (Chapter 4 and 5)

2.3.3 Primary rat astrocytes culture (Chapter 6)

2.4 Animals

2.4.1 *In vivo* experiment using Sprague-Dawley (SD) rats (Chapter 3 and 6)

2.4.2 *In vivo* experiment using C57/BL6J black mice (Chapter 4 and 5)

2.5 Proteomic study

2.5.1 Two dimensional gel electrophoresis (2-DE) (Chapter 3)
2.5.2 Silver staining and image analysis 40
2.5.3 Tryptic in-gel digestion 41
2.5.4 Mass spectrometry analysis and protein identification 41
2.6 Western blot analysis (Chapter 3-6) 42
 2.6.1 Western blotting for cells 42
 2.6.2 Western blotting for animal tissues (Chapter 4) 44
2.7 Quantitative Real-time reverse transcription (RT)-polymerase chain reaction
 analysis (Chapter 3, 4 and 6) 45
2.8 Analysis of XBP-1 mRNA splicing (Chapter 4) 47
2.9 PCR array analysis of AD related gene expression (Chapter 6) 47
2.10 Detection of intracellular ROS (Chapter 4 and 5) 48
2.11 Cell viability assessment by MTT assay (Chapter 4, 5 and 6) 49
2.12 Immunohistochemistry (Chapter 4 and 5) 50
2.13 Transfection of short interfering RNA (siRNA) (Chapter 6) 51
2.14 Plasmid construction and transfection (Chapter 6) 51
2.15 Statistical analysis 52

CHAPTER 3 Study of the Proteome Profiles of High Glucose Cultured VSMC and GRP78
Changes in Diabetic Macrovasculopathy 53

3.1 Introduction 53
3.2 Results 55
 3.2.1 Proteome profiles of VSMC cultured in normal and high glucose medium
 for prolonged period of time. 55
3.2.2 High glucose treatment downregulated GRP78 mRNA and protein expression levels in VSMC.
3.2.3 Time-course study of GRP78 and ER stress markers expression in high glucose treated VSMC.
3.2.4 Decreased GRP78 transcriptional levels in aorta of diabetic rats.

3.3 Discussion

CHAPTER 4 Study of the Role of GRP78 and ER Stress in High Glucose and Diabetes-induced Astrocytes Activation.

4.1 Introduction

4.2 Results

4.2.1 High glucose induced upregulation of GFAP, downregulation of GRP78 and phosphorylated Akt in c6 glioma cells.

4.2.2 Effects of high glucose on ER chaperones and ER stress markers.

4.2.3 High glucose increased ROS production without alternation of the transcriptional levels of the antioxidant enzymes SOD-1, SOD-2, GPx-1 and CAT.

4.2.4 High glucose-suppressed GRP78 in c6 glioma cells was partly blocked by the anti-oxidant NAC and high glucose further reduced cell viability of c6 glioma cells challenged by pro-oxidant H$_2$O$_2$.

4.2.5 Increased number of reactive astrocytes found in the CA1, 2 sub-regions of the hippocampus of diabetic mice.

4.2.6 Decreased GRP78 expression in the hippocampus of STZ-induced diabetic mice at 4th and 8th week.
4.2.7 ER stress activation in the pyramidal neurons proximal to activated astrocytes in the hippocampus of diabetic mice at 4th week. 80

4.3 Discussion 95

CHAPTER 5 Investigation on the Effects of Methanol Extract of Radix Astragali in High Glucose-induced and Diabetes-induced Astrocytes Activation 102

5.1 Introduction 102

5.2 Results 104

5.2.1 UPLC/MS analysis identified the active compound astragaloside IV (AS IV) in the methanol extract of Radix Astragali (RA). 104

5.2.2 Cytotoxicity of the total methanol extract of RA (TRAE) and enriched saponins methanol extract of RA (ERAE). 104

5.2.3 High dose ERAE reduced high glucose induced-ROS production in c6 glioma cells. 104

5.2.4 TRAE and ERAE significantly attenuated high glucose induced-GFAP induction in c6 glioma cells. 105

5.2.5 Total methanol extract of RA (TRAE) has no significant effect on body weight and blood glucose level of STZ induced-diabetic mice. 105

5.2.6 Medium dose TRAE significantly reduced number of reactive astrocytes in the CA1, 2 hippocampal areas of diabetic mice. 106

5.3 Discussion 116

CHAPTER 6 Correlation between GRP78, GFAP and Cytokines Secretion in High Glucose-Activated Astrocytes and Gene Expression Changes In the Hippocampus 121

6.1 Introduction 121
6.2 Results

6.2.1 High glucose activated primary rat astrocytes and downregulated GRP78 expression level.

6.2.2 GRP78 silencing augmented GFAP protein expression without affecting GFAP mRNA expression in primary rat astrocytes.

6.2.3 GRP78 silencing significantly increased IL-6 and TNF-α mRNA expression in primary rat astrocytes.

6.2.4 Overexpression of GRP78 had no significant effect on GFAP regulation in primary rat astrocytes.

6.2.5 Overexpression of GRP78 downregulated high glucose-induced IL-6 and TNF-α mRNA expression in primary rat astrocytes.

6.2.6 STZ-induced diabetes modified mRNA expression of a few important genes in Alzheimer’s disease (AD) in the hippocampus of diabetic rats.

6.3 Discussion