Carrier Transport Characterization and Thin Film Transistor
Applications of Amorphous Organic Electronic Materials

Xu Wenwei

A thesis submitted in partial fulfillment of the requirements
for the degree of
Master of Philosophy

Principal Supervisor: Prof. SO Shu Kong
Hong Kong Baptist University
September 2012
Abstract

This thesis presents the charge injection and transport properties of p-doped organic hole transporters using transition metal oxides (TMOs) dopants. Three techniques are used to investigate the injection and the transport of phenylamine-based compounds in a sandwich configuration including current-voltage (JV), dark injection space-charge-limited current (DI-SCLC), and admittance spectroscopy (AS). In-plane transport properties of p-doped organics are measured by organic thin film transistor (OTFT) technique.

For charge injection, MoO$_3$ and NiO are used as the hole injection materials. The hole transporting materials under study are NPB and TPD which are popular hole transporting materials. Generally, MoO$_3$ and NiO form quasi-Ohmic contacts to NPB and TPD. Clear DI-SCLC transient peaks can be observed.

Besides pure organic materials, we also study transport properties of p-doped organic hole transporters. First, we employ time-of-flight (TOF) technique. NPB is p-doped by MoO$_3$, V$_2$O$_5$ and WO$_3$. After doping, the TOF signals become quite dispersive. Also a background current is present. Besides TOF, OTFT is used to study the effects of MoO$_3$ dopants on eight amorphous organic hole transporters (HTs). Doping MoO$_3$ into organic HTs can produce a leakage current, but the field effect current still can be observed. From the output characteristics, the mobilities μ, threshold voltage V_T and energetic disorder σ can be extracted. After doping, mobilities μ and the energetic disorder σ of these doped films generally become smaller and the V_T becomes more positive. The free carrier concentration can be extracted from the mobility and the conductivity data. For 5% (vol) of MoO$_3$, hole
concentration of about $10^{16} - 10^{18}\text{cm}^{-3}$ can be achieved whereas undoped samples have negligible hole concentrations. The increase of free carrier concentration, rather than the change in carrier mobilities, is the deciding factor in the conductivity enhancement in doped organic HTs.
Table of contents

Declaration .. i
Abstract ... ii
Acknowledgements ... iv
Table of contents ... v
List of figures ... viii
List of tables .. xvi

Chapter 1 Introduction ... 1
 1.1 Overview of organic semiconductors ... 1
 1.2 Application of organic semiconductors ... 2
 1.3 Research Motivation ... 5

Chapter 2 Fundamentals ... 8
 2.1 Basic theory ... 8
 2.1.1 Charge conduction mechanism .. 8
 2.1.1.1 Hopping conduction mechanism .. 8
 2.1.1.2 Poole-Frenkel (PF) Model .. 11
 2.1.1.3 Gaussian Disorder Model .. 13
 2.1.2 Charge injection mechanism .. 16
 2.1.2.1 Electronic properties of organic/metal interface 16
 2.1.3 Current-Voltage characteristics of organic solids 20
 2.1.3.1 Space-charge-limited current (SCLC) 20
 2.1.3.2 Dark Injection Space-Charge-Limited Current (DI-SCLC) 23
 2.2 Effects of doping on the density-of-states distribution and carrier hopping
 in disordered organic semiconductors ... 27
 2.2.1 Density-of states distribution in a doped disordered organic material 27
 2.2.2 Hopping in a doped organic semiconductor 29
 2.3 Fundamentals of organic thin film transistors (OTFTs) 33
 2.3.1 Working principle of OTFTs ... 33
 2.3.2 TFT Parameters extraction .. 38

Chapter 3 Experimental details .. 39
 3.1 Sample preparation .. 39
3.1.1 Material preparation ... 39
 3.1.1.1 Materials used for characterization .. 39
 3.1.1.2 Material purification ... 40
3.1.2 Substrate preparation .. 41
 3.1.2.1 Substrates of samples for dark injection (DI), time-of-flight (TOF) and current-voltage (JV) measurements .. 41
 3.1.2.2 Substrates of samples for organic thin film transistors (OTFTs) 42
3.1.3 Sample fabrication ... 43

3.2 Sample measurements .. 46
 3.2.1 Time-of-flight (TOF) measurement ... 46
 3.2.2 Current-Voltage (JV) measurement ... 49
 3.2.3 Dark-injection space-charge-limited current (DI-SCLC) measurement and Admittance Spectroscopy (AS) measurement .. 51
 3.2.4 Organic thin film transistors (OTFTs) ... 55

Chapter 4 Transition metal oxides (TMOs) as the hole injection materials for phenylamine-based (PA) compounds .. 57
 4.1 Introduction .. 57
 4.2 Experimental details .. 59
 4.3 Results and Discussions .. 60
 4.3.1 Current-Voltage (JV) characteristics .. 60
 4.3.2 Hole mobility analysis by DI-SCLC and AS ... 63
 4.3.2.1 Hole mobility measurements using DI-SCLC 63
 4.3.2.2 Hole mobility measurements using AS .. 67
 4.4 Conclusions .. 71

Chapter 5 Time-of-flight investigation of NPB doped with transition metal oxides (TMOs) system .. 72
 5.1 Introduction .. 72
 5.2 Experimental details .. 74
 5.3 Results and Discussions .. 75
 5.3.1 Room temperature measurements .. 75
 5.3.2 Temperature dependent transport measurements 80
 5.4 Conclusions ... 87
Chapter 6 Using OTFT technique to study carrier transport in MoO$_3$ doped semiconductors

6.1 Introduction ... 88
6.2 Experimental details... 91
6.3 Results and Discussion.. 93
6.3.1 In-plane conductivities measurements ... 93
6.3.2 Room temperature measurements of field effect mobilities .. 96
6.3.3 Temperature dependent transport measurements .. 105
6.3.4 Free carrier densities and activation energies for carrier generation............................. 109
6.3.5 UV-visible-IR absorption measurements ... 114
6.3.6 BCP, Alq3 and Rb doped MoO$_3$ using OTFT technique .. 124
6.4 Conclusions ... 129

Chapter 7 Applications of field effect transistors to investigate carrier transport properties of novel materials

7.1 Introduction ... 132
7.2 Experimental details.. 134
7.3 Results and Discussions ... 135
7.3.1 Mobility measurement at room temperature ... 135
7.3.2 Temperature dependent measurement ... 138
7.4 Conclusions ... 141

Chapter 8 Conclusions ... 142

List of References... 145