The Risk of Exposure and the Mechanistic Actions of Perfluorinated Compounds on Male Infertility and Metabolic Disorders.

WAN Hin Ting

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. Chris K.C. Wong
Hong Kong Baptist University
Aug 2013
Abstract

Endocrine disrupting chemicals (EDCs) are ubiquitous in our environment. The risk of the exposure and their effects on ecological and human health has raised public concerns recently. Over the past 20 years, significant levels of EDC contamination have been detected in both abiotic samples (i.e. air, soil and water) and biotic samples (i.e. wildlife and humans) at different geographical regions. Dietary consumption, inhalation dermal absorption are believed to be the major routes of the exposure to EDCs. Pathways of exposure to EDCs can be diverse; the identification of all possible exogenous exposure is not yet a feasible task. There is a need for a transformational change in the approach to contaminants in which more emphasis be placed on correlating population-based data to reveal human-environment interactions. In chapter 2, we analyzed a dataset of human blood samples in order to provide a framework of accumulated concentrations of EDCs. Evidence for the presence of PFCs, BPA and phthalates in the blood samples of most Hong Kong samples is provided. The observed characterizations of the contamination profile in human blood samples suggest a general exposure route to these contaminants. In the subsequent experimental chapters, one of the detected EDCs, PFOS which belongs to a family of synthetic fluorinated hydrocarbons (C₄-C₁₄) with the charged functional moiety of carboxylate, sulfonate or phosphonate will be studied. Because of its unique hydrophobic and oleophobic properties, they have been extensively used in various industrial and consumer products. The carbon-fluoride bonds render PFOS to be non-biodegradable, leading to their persistence in the environment and lengthy serum elimination half-life in animals. The manufacture of PFOS has been banned in most of the countries; however it is still produced.
in many developing countries like China. Being geographically closed to China, we are at great risk of exposure to PFOS.

Previous studies demonstrated that PFOS is hepatotoxicity. However, the underlying mechanism and the clinical significance of PFOS-induced biochemical changes in livers are not known. Herein, in chapter 3 a murine model was used to study the mechanistic effects of PFOS-induced hepatotoxicity. A time- and dose-dependent effect of PFOS exposure on hepatic lipid accumulation, resulting from the inhibition of mitochondrial β-oxidation and the disturbance on hepatic lipid transport were demonstrated. The data reveal the similar hallmark features as compared with the development of NAFLD (non-alcoholic fatty liver disease). Of special interest is the fact that PFOS has been suggested to act on PPARs to modulate energy homeostasis and listed as one of the risk factor in the alternation of development programming for metabolic diseases in life. Maternal transfer of PFOS across the human placenta has been reported, however toxicological information regarding the perinatal PFOS exposure to susceptibility of metabolic disorders in adult offspring is not known. In chapter 4, we investigated the effects of perinatal exposure to PFOS on glucose metabolism in animal offspring and whether these effects would be exacerbated under different diets. The effects of the environmental equivalent dose of PFOS exposure on the disturbance of hepatic lipid metabolism and glucose metabolism in pups and adults were demonstrated in F₁ at PND 21 and 63. The phenotypes of insulin resistance and glucose tolerance were evident (i.e. HOMA-IR index and glucose AUC) in the F₁ adults. The metabolic disturbance effects were exacerbated under high-fat diet during postnatal growth, highlighting the synergistic action of dietary fat content and PFOS on the development of metabolic disorders.
In addition to hepatotoxicity, negative effects of PFOS exposure on male fertility have been reported in both *in vitro* and *in vivo* animal models. A considerable number studies demonstrated the inhibitory effects of PFOS on testosterone synthesis and spermatogenesis. Nevertheless, the underlying molecular mechanism has not been fully elucidated. Here in chapter 5, by using an *in vitro* primary Sertoli cell model that mimics BTB in vivo, PFOS disturbed the organization of F-actin in Sertoli cells was first demonstrated. The localization of actin regulatory and adhesion proteins at the cell-cell interface which are essential to maintain BTB integrity, were disrupted. In addition, PFOS was found to perturb Sertoli-Sertoli cell gap junction (GJ) communication, by down-regulating the expression of the major GJ integral membrane protein, connexin 43. Intriguingly an overexpression of phosphorylated FAK-Tyr^{407} was found to protect, at least in part, the PFOS-induced destruction in BTB integrity. Collectively the study highlighted the mechanistic actions of PFOS on steatosis, impairment of glucose metabolisms and reproductive system, particularly in male.
Table of Contents

Declaration
Abstract
Acknowledgements
Table of Contents
List of Tables
List of Figures
List of Abbreviations

Chapter 1 Literature review

1.1 Endocrine Disrupting Chemicals
 1.1.1 Perfluorinated compounds (PFCs)
 1.1.2 Perfluorooctane sulfonate (PFOS)

1.2 Effects of PFOS in experimental studies
 1.2.1 Effects of PFOS exposure to liver
 1.2.1.1 PFOS act as weak PPARα agonist
 1.2.1.2 Activation of lipid metabolic enzymes
 1.2.1.3 PFOS lead to hepatic steatosis
 1.2.1.3.1 Fatty acid metabolism
 1.2.1.3.2 Glucose metabolism
1.2.2 Effects of EDCs on reproduction system

1.2.2.1 Impact of EDCs on hormone dialogue – from HPG axis to testosterone action in the testis

1.2.2.2 Multiple steroidogenesis regulatory pathways in Leydig cells are the target of EDCs

1.2.2.3 Impact of EDCs on sperm production in the testis via their effects of Sertoli and germ cells

1.2.2.4 EDC-induced disruption of the local hormone/autocrine/paracrine microenvironment in the testis

1.2.2.4.1 The somatotropic GH/IGF axis

1.2.2.4.2 Sertoli cell peptide hormones

1.2.2.4.3 Impact of EDCs on induction of reaction oxygen species

1.2.2.4.4 Impact of EDCs on the blood-testis-barrier

Working Hypothesis
Chapter 2 Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations

2.1 Introduction

2.2 Materials and methods

2.2.1 Samples collections

2.2.2 Chemical materials for instrumental analysis

2.2.3 Determination of PFCs

2.2.4 Determination of BPA

2.2.5 Determination of phthalates

2.2.6 Statistical analysis

2.3 Results

2.3.1 Levels of PFCs were detected in blood samples

2.3.2 Contaminations of plasticizers were also found in blood samples

2.4 Discussion

2.4.1 The trend of PFCs exposure profile towards male is consistent with other studies

2.4.2 Contamination of plasticizers were ubiquitous
Chapter 3 PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport

3.1 Introduction

3.2 Materials and Methods

3.2.1 Experimental animals and chemicals

3.2.2 Histological examination of the mouse livers

3.2.3 Liver lipid content determination

3.2.4 RNA isolation and quantitative PCR

3.2.5 Western blot analysis

3.2.6 Serum HDL and LDL/VLDL Assay

3.2.7 β-oxidation Assay

3.2.8 Statistical analysis

3.3 Results

3.3.1 Effects of PFOS exposure on body and liver weights

3.3.2 Histological and TG analyses on liver

3.3.3 Effects of PFOS exposure on the expression levels of fatty acid translocase and lipoprotein lipase in liver and adipose tissues
3.3.4 Effects of PFOS exposure on hepatic lipid export
3.3.5 Effects of PFOS exposure on oxidation of fatty acids in liver
3.4 Discussion
3.4.1 PFOS induce lipid accumulations in hepatocytes
3.4.2 Fatty acid oxidation
3.4.3 Hepatic fatty acid uptake
3.4.4 Hepatic export of lipids
3.5 Conclusion

Chapter 4 Perinatal exposure to PFOS affect glucose metabolism in adult life on a high fat diet

4.1 Introduction
4.2 Materials and Methods
4.2.1 Experimental animals and chemicals
4.2.2 Serum PFOS analyses
4.2.3 Liver PFOS analyses
4.2.4 RNA isolation and real-time PCR
4.2.5 Serum fasting glucose and insulin
4.2.6 Oral Glucose Tolerance Test (OGTT)
4.2.7 Statistical analysis
4.3 Results

4.3.1 Oral gavage exposure to PFOS interferes with maternal glucose metabolism

4.3.2 Maternal-fetal transfer and lactational exposure to PFOS affects glucose metabolism and hepatic gene expression of the pups at postnatal day 21

4.3.3 The elimination of body loading and the effects of PFOS on glucose metabolism of STD- and HFD-fed F1 adult at PND 63

4.4 Discussion

4.4.1 Effects of PFOS exposure on glucose metabolism of maternal mice

4.4.2 Effects of maternal transfer and lactational exposure to PFOS on F1 pups at PND 21

4.4.3 Effects of post-perinatal PFOS exposure on glucose metabolism of F1 adult offspring at PND 63

4.5 Conclusion
Chapter 5 PFOS perturbs blood-testis barrier function by affecting gap junction via p-FAK-Tyr407

5.1 Introduction

5.2 Materials and Methods

5.2.1 Animals and antibodies

5.2.2 Toxicants

5.2.3 Isolation of Sertoli cells and treatment of cells with toxicants

5.2.4 Preparation of FAK Y407E phosphomimetic mutant cDNA construct

5.2.5 Assessing Sertoli cell TJ-permeability barrier function after transfection of Sertoli cells either with FAK Y407E phosphomimetic mutant for its overexpression, or miR-135b for FAK silencing

5.2.6 Dual-labeled immunofluorescence analysis

5.2.7 Assessment of GJ communications by dye-transfer assay

5.2.8 Cytotoxicity assay

5.2.9 Actin polymerization assay

5.2.10 Electron microscopy

5.2.11 RT-PCR and immunoblot analysis

5.2.12 Statistical analysis

5.3 Results

5.3.1 PFOS induces dose-dependent and reversible disruption of the
Sertoli cell BTB in vitro mediated by down-regulating the expression of BTB-associated and regulatory proteins 144

5.3.2 PFOS perturbs F-actin organization at the BTB, impeding the localization and/or distribution of BTB-associated proteins at the Sertoli cell-cell interface 145

5.3.3 PFOS perturbs intercellular gap junction (GJ) communication between Sertoli cells at the BTB 146

5.3.4 Overexpression of p-FAK-Tyr⁴⁰⁷ via the use of a phosphomimetic mutant in Sertoli cells alleviates the disruptive effects of PFOS on Sertoli cell TJ barrier function 147

5.3.5 Silencing of FAK by FAK-specific miR-135b further sensitizes and worsens Sertoli cell BTB function to the disruptive effects of PFOS 148

5.4 Discussion 150

5.5 Conclusion 153

Chapter 6 Conclusions 168

References 171

Curriculum Vitae 196