A Computational Study on Vaccination Decision Making for Infectious Disease Control

XIA Shang

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Professor LIU Jiming

Hong Kong Baptist University

August 2013
Abstract

Vaccination is one of the most effective methods of preventing infectious diseases by immunizing a critical portion of host population (i.e., over a herd immunity threshold). The challenge for public health authorities lies in how to achieve a timely and adequate level of vaccination coverage needed for preventing outbreaks, especially against an emerging infectious disease, e.g., 2009 influenza A (H1N1). This challenge is twofold. On the one hand, the constrained capacity of development, manufacturing, and logistics lead to a limited vaccine supply. In this case, vaccination programs may cover only a part of the host population. On the other hand, individuals make their own decisions on whether or not to be vaccinated, which will collectively affect the actual level of vaccine uptake. Facing with these issues, in this thesis, we focus on the problem of how to evaluate and improve the effectiveness of vaccination programs in controlling infectious diseases. To address such a problem, we develop a computational approach to characterizing vaccination decision making at two levels: (1) population-level vaccine allocation decision making; (2) individual-level voluntary vaccination decision making.

At the population level, due to the limited vaccine supply, public health authorities need to determine how to allocate a given number of vaccine doses to certain individuals/subpopulations that can most effectively benefit the whole population. Regarding such a problem, we investigate the impact of host population heterogeneities on the dynamics of disease spread. Then, we determine how to target subpopulations for vaccine allocation. In doing so, we develop a modified compartmental model that incorporates individuals’ age-specific
heterogeneities in terms of population-dependent susceptibility and infectivity. Moreover, due to the lack of the accurate and reliable descriptions about individuals’ contact relationships responsible for disease transmissions, we utilize a computational method to infer individuals’ cross-age contact patterns (i.e., the contact frequency and structure) from the social-demographical data of the population. Next, based on the proposed epidemic model, we develop a prioritization method that estimates the relative priority of each subpopulation by computing the effects of vaccinating individuals of certain ages for reducing disease transmissions. By doing so, we can address the problem of vaccine allocation by targeting certain subpopulations so as to most effectively to prevent disease spread in the whole population.

At the individual level, in the context of voluntary vaccination, individuals’ decisions have an impact on the actual vaccination coverage, which will crucially affect the effectiveness of disease control. In order to understand the impact of voluntary vaccination, we develop decision models to characterize and evaluate individuals’ vaccination decision making during an epidemic. In doing so, we identify several key factors that affect vaccination decisions from the empirical studies on public acceptance of vaccines: they are (1) the risk and benefit of vaccination, (2) the impact of social influence, and (3) individuals’ subjective perceptions. For the risk and benefit of vaccination, we utilize a payoff-based approach to representing vaccination decision making as individuals’ self-initiated cost minimization. For the impact of social influence, we further explore the Social Impact Theory (SIT) to describe vaccination decision making with respect to individuals’ social interactions. Finally, in order to evaluate individuals’ subjective perceptions, we extend the Dempster-Shafer Theory (DST) to model the spread of awareness during an epidemic and characterize vaccination decision making corresponding to individuals’ perceptions about disease severity and vaccine safety. By doing so, we can investigate the impact of individuals’ vaccination decisions on the resulting coverage of a voluntary vaccination program and, thereafter, assess
the effectiveness of disease control.

In order to demonstrate the performance of the proposed prioritization method for population-level vaccine allocation and decision models for individual-level voluntary vaccination, we carry out a series of simulation-based experiments to investigate the spread of an influenza-like disease and the implementation of vaccination programs. We describe the real-world scenario of the 2009 Hong Kong H1N1 influenza epidemic and determine the relative priorities for age-specific vaccine allocation. In addition, we examine the impact of social influence and the spread of awareness by representing individuals’ interaction relationships with reference to real-world social networks. In this case, we evaluate individuals’ voluntary vaccination corresponding to several impact factors, including the relative costs of vaccination and disease infection, the strength of social influence, and the spread of awareness about negative events of disease and vaccine.

In summary, this thesis emphasizes the development of computational methods to investigate the population-level vaccine allocation and the individual-level voluntary vaccination. The work as demonstrated in this thesis can provide public health authorities with further insights into the improvement of vaccination programs to more effectively control infectious diseases.

Keywords: Infectious Disease Control, Vaccine Allocation, Vaccination Decision Making
Table of Contents

Declaration i

Abstract iii

Acknowledgements vi

Table of Contents viii

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Background ... 1

1.2 Motivations and Objectives 4
 1.2.1 Disease Dynamics in A Heterogeneous Host Population 5
 1.2.2 Population-Level Vaccine Allocation 7
 1.2.3 Individual-Level Voluntary Vaccination 9

1.3 Contributions and Significance 11
 1.3.1 Describing Disease Spread in A Heterogeneous Host Population 11
 1.3.2 Prioritizing Age-Specific Subpopulations for Vaccine Allocation 12
 1.3.3 Evaluating the Impact of Social Influence on Voluntary Vaccination ... 14
 1.3.4 Characterizing Individuals’ Subjective Perceptions in Vaccination Decision Making 15
1.4 Outline of the Thesis ... 17

Chapter 2 Literature Review 19

2.1 Mathematical Characterization of Disease Dynamics 20
 2.1.1 Basic Notions and Concepts 20
 2.1.2 Epidemic Models .. 21
 2.1.3 Contact Relationships ... 25

2.2 Vaccination and Infectious Disease Control 29
 2.2.1 Herd Immunity Effect .. 29
 2.2.2 Vaccination Strategies .. 30

2.3 Voluntary Vaccination ... 33
 2.3.1 Vaccine Confidence Gap .. 33
 2.3.2 Impact Factors .. 34
 2.3.3 Vaccination Decision Modeling 36

2.4 Summary .. 37

Chapter 3 Characterizing Disease Spread in A Heterogeneous Host

Population ... 38

3.1 Introduction .. 38

3.2 Contact Relationships .. 41
 3.2.1 Contact Patterns in Different Social Settings 41
 3.2.2 Contact Matrix Inference 42

3.3 Epidemic Model .. 43

3.4 The 2009 Hong Kong H1N1 Influenza Epidemic 44
 3.4.1 Disease Dynamics .. 44
 3.4.2 Age-Specific Contact Matrices 44
 3.4.3 Parameterization of the Epidemic Model 46

3.5 Discussion .. 48

3.6 Summary .. 50
Chapter 4 Prioritizing Age-Specific Subpopulations for Vaccine Allocation

4.1 Introduction ... 52
4.2 Prioritization Method for Disease Interventions 56
 4.2.1 Next Generation Matrix 56
 4.2.2 Prioritization Method 57
4.3 Simulation-Based Experiments 60
 4.3.1 Relative Priorities of Age-Specific Subpopulations 60
 4.3.2 Effects of Prioritized Disease Interventions 65
4.4 Discussion .. 67
4.5 Summary .. 68

Chapter 5 Evaluating the Impact of Social Influence on Voluntary Vaccination

5.1 Introduction .. 71
5.2 Individuals’ Voluntary Vaccination 72
5.3 Modeling Vaccination Decision Making 75
 5.3.1 Cost Minimization: Game Theoretical Analysis 76
 5.3.2 Social Influence: Social Impact Theory (SIT) 78
 5.3.3 Vaccination Threshold 80
5.4 Simulation-Based Experiments 82
 5.4.1 Simulation Settings 82
 5.4.2 Vaccination Coverage 83
 5.4.3 Sensitivity Analysis 89
5.5 Discussion .. 91
5.6 Summary .. 94

Chapter 6 Characterizing the Spread of Awareness in Vaccination Decision Making

6.1 Introduction .. 97
6.2 Belief-Based Characterization of Vaccination Decision Making 102
 6.2.1 Dempster-Shafer Theory (DST) 103
 6.2.2 Awareness Spread . 104
 6.2.3 Disease Spread . 106
6.3 Simulation-Based Experiments . 108
 6.3.1 Baseline Disease Dynamics . 108
 6.3.2 The Interplays of Two Kinds of Dynamics 110
6.4 Discussion . 117
6.5 Summary . 120

Chapter 7 Conclusions and Future Work 122
 7.1 Main Contributions . 122
 7.2 Future Work . 127

Bibliography 131

Curriculum Vitae 157