Estimation Techniques for Advanced Database Applications

Yun PENG

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Assistant Professor Byron CHOI

Hong Kong Baptist University

August 2013
Abstract

Database systems have been ubiquitously used as fundamental facilities to manage a large amount of data efficiently. Nowadays, the data that needs to be managed by database systems is growing explosively. For example, the number of users of Twitter has exceeded 500 millions and the total number of tweets sent has exceeded 170 billions; the number of users of Facebook has exceeded 1.15 billions and the number of friend connections has exceeded 150 billions. How to efficiently manage and analyze data of such scale is a crucial task of database systems. Among many other solutions, estimation techniques have been proved successful to address some of these problems. In this thesis, we study the applications of estimation techniques in important database problems, including three graph database problems and one relational database problem. Specifically, regarding graph databases, we study selectivity estimation of twig queries on cyclic graphs, authentication of outsourced subgraph similarity search and optimal graph index prediction. Regarding relational databases, we study the classical view update problem.

Firstly, we study the selectivity estimation of twig queries on cyclic graphs. Similar to relational database, selectivity estimation plays a crucial role in query optimization of graph database. However, determining the optimal query evaluation plan (QEP) for a graph query is more challenging than its relational counterpart. This is because of the complexity of graph structure analysis. For example, given a twig query against a cyclic graph, computing the cost of a QEP may need to enumerate all the matchings between the subtrees of the twig query and the graph. This is potentially costly as the graph may contain an exponential number of matchings. Many works have been proposed to study the selectivity estimation. However, most of them focus on either the cyclic graphs or
the twig queries but not both. In the first part of this thesis (Chapter 3), we propose a novel histogram-based method to support selectivity estimation of twig queries on cyclic graphs.

Secondly, we study the estimation in outsourced subgraph similarity search. Subgraph similarity search itself is estimation-like, which returns the graphs that have approximate substructures with the query graph. This query has been used in a wide range of applications including bioinformatics, chem-informatics, Web topology, etc. Recently, due to the complexity of subgraph similarity search and the explosive growth of graph data, the data owner of graph database is more appealing to outsource their data to third-party service providers, which will process the query on behalf of the data owner. However, the service provider may not be trustable and therefore it is required to return an authentication structure to the user for authenticating the correctness of query results. Since the manipulation of the authentication structure takes the major overhead of outsourced subgraph similarity search, in the second part (Chapter 4) of this thesis, we propose an estimation-based method to optimize its processing.

Thirdly, estimation is also crucial in the optimal graph index prediction. Recently, an ample body of graph indexes have been proposed to optimize query processing on graphs. However, the performances of such indexes may vary greatly as verified from our experiments with a large number of random and scale-free graphs. In particular, our preliminary experiments show that the runtime of 1,000 random queries on an index, even on the same graph, can often exhibit large variances. Specifically, the mean and standard deviation of 2-hop labeling are 14.1 seconds and 4.2 and those of prime labeling are 11.6 seconds and 59.7, respectively. Moreover, the runtime is often skewed and has a long tail at large values. Therefore, it is desired to predict the optimal index on a graph. However, designing an exact performance model is a daunting task since the structures of graph indexes are often complex and ad-hoc. In the third part (Chapter 5) of this thesis, we apply statistical distributions to estimate the query performance. Then, the classical data mining techniques are applied to predict the optimal index.

Finally, we study the application of estimation techniques in the classical view update
problem, where the updates specified by the user on the view need to be translated to the updates on the source database, such that the new view derived from the updated source database is consistent with the user’s expectation. The state-of-the-art view update analysis methods often involve two interleaving stages: side-effect determination and update translation. It is well-known that the translation problem is NP-complete. Therefore, it is desirable to develop a method that can efficiently estimate the side effects, such that the view updates having side effects can be filtered before they are passed to the costly translation. In this forth part (Chapter 6) of this thesis, we develop a data-oriented side-effect estimation technique to support such view update analysis.

The works proposed in this thesis verify that the estimation techniques are useful in various major components in database systems.

Keywords: Selectivity estimation, Subgraph similarity search, Graph index prediction, Side-effect estimation, Graph database, Outsourced database, Relational database
Table of Contents

Declaration i
Abstract ii
Acknowledgements v
Table of Contents vi
List of Tables xi
List of Figures xii

Chapter 1 Introduction 1
1.1 Case Study: Query Optimization 1
1.2 Graph Database 4
 1.2.1 Graph Data 4
 1.2.2 Graph Query 7
1.3 Estimation Techniques for Graph Database 10
 1.3.1 Selectivity Estimation of Twig Queries on Cyclic Graphs 11
 1.3.2 Estimation for Outsourced Subgraph Similarity Search 13
 1.3.3 Query Time Estimation for Optimal Index Prediction 16
1.4 Estimation Techniques for Relational Database 18
 1.4.1 Side-effect Estimation for View Updates 18
1.5 Thesis Organization 20
Chapter 2 Related Work

2.1 Selectivity Estimation on Graphs

2.1.1 Graph-based Approach

2.1.2 Relational-based Approach

2.1.3 Alternative Representation of Graphs

2.2 Outsourced Subgraph Similarity Search

2.3 Optimal Graph Index Prediction

2.3.1 Review of Works on Reachability Query

2.3.2 Review of Works on Optimal Graph Index Prediction

2.4 View Update Problem

Chapter 3 Selectivity Estimation of Twig Queries on Cyclic Graphs

3.1 Introduction

3.2 Definitions and Preliminaries

3.2.1 Data Model and Twig Queries

3.2.2 Consecutive Ones Property

3.3 Overview

3.4 Representation of Cyclic Graphs

3.4.1 The Original Prime Labeling

3.4.2 Prime Labeling for Cyclic Graphs

3.4.3 Matrix Representation of Cyclic Graphs

3.5 Matrix transformations

3.5.1 Transforming to C1P Matrix

3.5.2 Optimizing Matrix Transformation

3.6 Selectivity Estimation

3.6.1 Two-dimensional Histograms

3.6.2 The Overall Estimation Algorithm

3.6.3 Estimation Details with Histograms

3.7 Experimental Evaluation

3.7.1 Experiments on overall performance
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>Experiments on optimizations</td>
<td>73</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Indirect Comparison with XSketch and TreeSketch</td>
<td>76</td>
</tr>
<tr>
<td>3.8</td>
<td>Conclusions</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Background and Problem Statement</td>
<td>82</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Backgrounds</td>
<td>82</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Problem Formulation</td>
<td>85</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Query Paradigm and Overview of Our Method</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Metric Based Filtering</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Graph Metric Tree</td>
<td>91</td>
</tr>
<tr>
<td>4.4.1</td>
<td>GMTree Structure</td>
<td>92</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Subgraph Similarity Search on GMTree</td>
<td>94</td>
</tr>
<tr>
<td>4.5</td>
<td>Authentication with GMTree</td>
<td>95</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Signing GMTree</td>
<td>95</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Definition of Verification Objects</td>
<td>97</td>
</tr>
<tr>
<td>4.5.3</td>
<td>VO Construction</td>
<td>98</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Cost Model of VO Size</td>
<td>101</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Authentication Algorithm</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Optimization Problems</td>
<td>108</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Authenticated MCS Computation</td>
<td>109</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Pivot Selection</td>
<td>113</td>
</tr>
<tr>
<td>4.7</td>
<td>Experimental Evaluation</td>
<td>119</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Comparison with the Baseline and Grafil*</td>
<td>121</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Authenticated Query Overhead</td>
<td>122</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Detailed Performances</td>
<td>123</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Effectiveness of Optimizations on GMTree</td>
<td>127</td>
</tr>
<tr>
<td>4.8</td>
<td>Conclusions</td>
<td>129</td>
</tr>
</tbody>
</table>
Chapter 5 Spectral Decomposition for Optimal Graph Index Prediction
5.1 Introduction .. 130
5.2 Background to Graph Spectral Decomposition 133
5.3 Problem Formulation ... 134
5.4 Performance Metric ... 135
5.5 Spectral Similarity of Graphs ... 137
 5.5.1 Unifying the Dimensionalities of Graphs 137
 5.5.2 Permutation of Vertex ID .. 138
 5.5.3 Spectral Similarity Between Graphs 139
5.6 Prediction Algorithm ... 140
 5.6.1 Clustering Algorithm .. 141
 5.6.2 Prediction Algorithm .. 142
5.7 Experimental Evaluation .. 143
 5.7.1 Experimental Setup .. 143
 5.7.2 Experiments on Distribution Fittings 144
 5.7.3 Prediction Accuracies ... 145
5.8 Conclusions .. 148

Chapter 6 Side-effect Estimation: A Practical Support to the View Updates of Relational Databases
6.1 Introduction .. 149
6.2 Preliminaries and Problem Statement ... 154
6.3 Quality of Side-effect Detector .. 155
 6.3.1 Analysis with KL Divergence ... 156
 6.3.2 Revised Notion of Errors ... 161
6.4 Join Cardinality Summary (JCard) .. 162
 6.4.1 Terminologies and Notations ... 162
 6.4.2 JCard Definition ... 165
6.5 Side-effect Estimation with JCard .. 168
 6.5.1 Estimation Algorithm .. 169