The Study of MicroRNAs in Nasopharyngeal Carcinoma

HA Wai Yan

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

Principal Supervisor: Prof. WONG Ngok Shun, Ricky

August 2013

Hong Kong Baptist University
ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression by complementing to target messenger RNA (mRNA). Through studying miRNA deregulation in diseases can provide an insight on understanding the molecular mechanisms of diseases and increasing the prognostic and diagnostic potential. Nasopharyngeal Carcinoma (NPC), a squamous cell carcinoma of the nasopharynx, is frequently seen among Chinese ethnic in southern China. Growing evidence indicated that miRNAs deregulation was detected in NPC. The objectives of this thesis is to reveal the NPC-related biomarkers using miRNA profiling technique on a variety of biological and clinical samples including formalin fixed paraffin-embedded (FFPE) tissues, NPC and NP epithelial (NPE) cell lines – HK-1, C666-1, NP69, and NP460, and the corresponding conditioned medium; to evaluate the panel of miRNA candidates in the NPC patient sera; and to explore the functional characteristics of targeted miRNA.

The real-time PCR profiling data and the statistical significance were evaluated by the DataAssist™ software. The results indicated that there were 9 miRNA candidates (miR-205, miR-196a, miR-149, miR-183, miR-224, miR-210, miR-136, miR-200c and miR-141) significantly over-expressed with fold changes more than 3-fold in undifferentiated NPC patients when comparing to non-NPC controls. While only one miRNA, miR-150, was found down-regulated with the fold changes less than 3-fold in this study. Apart from this, the expression level of selected miRNA markers - miR-150, miR-200c, miR-205 and miR-196a were further evaluated in 149 human NPC patient sera and 28 non-cancerous controls. It was found that miR-150 was significantly down-regulated in the late stages NPC patients. There was about 3 and 2.5-fold decrease of miR-150 expression in T3 (p<0.01) and T4 (p<0.05) stages respectively as comparing with the non-cancerous controls. It suggests that miR-150 may serve as one of the miRNA markers for serological-based detection of NPC.

Based on these findings, miR-150 would be a potential molecular modulator in NPC tumorigenesis. Thus, the functional role of miR-150 was
studied by the gain-of-function and loss-of-function based bioassays. Data showed that miR-150 might act as tumour suppressor and mediating the epithelial-mesenchyme-transition (EMT) of NPC cells. Taken together, the current study showed miRNA deregulation in NPC clinical specimens and miRNA candidates, miR-150, seems to be highly associated with the NPC pathogenesis. Thus, it can conclude that through understanding the role of miRNAs in NPC, it could be a novel strategy for the NPC treatment.
TABLE OF CONTENTS

DECLARATION i
ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
List of Figures viii
List of Tables x
List of Abbreviations xi

Chapter 1: Nasopharyngeal carcinoma (NPC) and microRNAs (miRNAs) 1
1.1 Background 1
 1.1.1 The prevalence of NPC in Hong Kong 1
 1.1.2 Non-viral risk factors for NPC pathogenesis 2
 1.1.3 EBV and NPC pathogenesis 8
 1.1.4 Molecular diagnosis of NPC 12
 1.1.5 miRNA and human cancers 14
 1.1.6 EBV BRAT miRNAs, host cell miRNAs and NPC pathogenesis 19
 1.1.7 Aims of the study 23

Chapter 2: MicroRNA profiling of NPC using formalin fixed paraffin-embedded (FFPE) tissues 25
2.1 Background 25
2.2 Methodology 29
 2.2.1 FFPE tissue blocks 29
 2.2.2 Extraction of miRNA from FFPE tissues and their quality assessment 29
 2.2.3 MicroRNA profiling of nasopharyngeal carcinoma FFPE specimens by real time PCR 33
 2.2.4 Data and statistical analysis 33
2.3 Results and discussion 35
Chapter 3: miRNA expression profiling of nasopharyngeal carcinoma (NPC) / nasopharyngeal epithelial (NPE) cell lines and the functional characterization of miR-150

3.1 Background

3.1.1 NPC/NPE cell lines

3.1.2 Cell-derived membrane vesicles (CMVs) and tumours

3.1.2.1 Biogenesis of microvesicles and exosomes

3.1.2.2 Possible mechanisms of intercellular communication by exosomes

3.1.2.3 The role of membrane vesicles (MVs) in tumorigenesis

3.2 Methodology

3.2.1 Cell culture

3.2.2 *In vitro* production of exosomes containing conditioned media

3.2.3 Total RNA extraction from NPC/NPE cell lines

3.2.4 Extraction of total RNA from exosomes and microvesicles derived from the conditioned medium

3.2.5 miRNAs expression profiling of NPC cell lines and tumor cell derived exosomes

3.2.6 Cell transfection with anti-sense miRNA inhibitor or precursor mimics

3.2.7 Migration assay

3.2.8 Western blot analysis

3.3 Results and discussion

3.3.1 miRNA expression profiling of NPC/NPE cell lines

3.3.2 The correlation of fold changes between the clinical specimens and cell lines

3.3.3 miRNA expression profiling of NPC/NPE cell lines-derived exosomes and microvesicles

3.3.4 Functional characterization miR-150 in NPC cells
Chapter 4 : Evaluation of the potential use of candidate miRNA in human sera as NPC markers

4.1 Background
 4.1.1 Circulating miRNAs in human bodily fluids
 4.1.2 Circulating miRNAs as biomarkers for cancer detection

4.2 Methodology
 4.2.1 Human serum samples and RNA isolation
 4.2.2 cDNA synthesis and the detection of candidate miRNAs by real time PCR
 4.2.3 Construction of synthetic miRNA standard curve for absolute miRNA quantification
 4.2.4 General statistical analysis

4.3 Results and discussion

Chapter 5 : Conclusions

References

Curriculum Vitae