Clustering of Categorical and Numerical Data without Knowing Cluster Number

JIA Hong

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. Yiu-ming CHEUNG

Hong Kong Baptist University

April 2013
Abstract

Clustering is an effective technique for multivariate data analysis and is prevalent in different research areas. However, there are two challenging problems encountered in unsupervised clustering analysis. The first one is that many clustering algorithms need the number of clusters to be pre-assigned exactly; otherwise, they will almost always give out an incorrect clustering result. However, this vital information is not always available in practice. Besides, since most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both, it becomes a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes as there exists an awkward gap between the similarity metrics for categorical and numerical data.

To handle the cluster number selection problem, in this thesis, we further study the penalization and cooperation mechanisms in competitive learning paradigm and propose a novel learning algorithm called Cooperative and Penalized Competitive Learning (CPCL), which implements the cooperation and penalization mechanisms simultaneously in a single competitive learning process. The integration of these two different kinds of competition mechanisms enables the CPCL to locate the cluster centers more quickly and be insensitive to the number of seed points and their initial positions. The promising experimental results on synthetic and real data demonstrate the superiority of the proposed algorithm.

Next, on the model selection for density mixture learning, we introduce the cooperation mechanism into the Maximum Weighted Likelihood (MWL) learning framework with a novel weight design and present an algorithm named Cooperative
EM (CEM) for mixture model learning with automatic model selection. Moreover, in order to enhance the robustness of the CEM algorithm to the initial parameters, we integrate the cooperation and penalization mechanisms together and accordingly generate a Cooperative and Penalized EM (CPEM) algorithm, in which the winning component in the competition at each time step will not only cooperate with the most promising rivals but also penalize some other rivals with a dynamic strength. It is found that the CPEM is insensitive to the initial parameters and can give a better estimation of the mixture model parameters, as well as the number of components. Experiments show the efficacy of the proposed algorithms on synthetic and real data.

Additionally, to address the problem of clustering on data mixed with categorical and numerical attributes, we present a general clustering framework based on the concept of object-cluster similarity and give a unified similarity metric which can be simply applied to the data with categorical, numerical, and mixed attributes. Accordingly, an iterative clustering algorithm is developed, whose outstanding performance is experimentally demonstrated on different benchmark data sets. Moreover, to circumvent the difficult problem of cluster number selection, we further develop a penalized competitive learning algorithm within the proposed clustering framework. The embedded competition and penalization mechanisms enable this improved algorithm to determine the number of clusters automatically by gradually eliminating the redundant clusters. The experimental results show the efficacy of the proposed approach.
Table of Contents

Declaration ... i

Abstract .. ii

Acknowledgements. ... iv

Table of Contents ... v

List of Tables. .. viii

List of Figures. .. ix

Chapter 1 Introduction .. 1

 1.1 K-means and Number of Clusters ... 2

 1.2 Learning Density Mixture Models and Model Selection Problem 4

 1.3 Clustering on Data with Categorical and Numerical Attributes 6

 1.4 Main Contributions of this Thesis ... 7

 1.5 Organization of the Thesis .. 8

Chapter 2 Literature Review of Related Works .. 10

 2.1 Clustering without Knowing Cluster Number ... 10

 2.2 Model Selection for Density Mixture Learning ... 14

 2.3 Clustering on Data with Categorical and Numerical Attributes 18
Chapter 3 Cooperative and Penalized Competitive Learning for Robust Data Clustering 21

3.1 Introduction .. 21
3.2 Overview of Existing Competitive Learning Models 22
 3.2.1 Overview of RPCL Algorithm and Its Variants 22
 3.2.2 Overview of CCL Algorithm 25
3.3 Cooperative and Penalized Competitive Learning (CPCL) Approach 26
 3.3.1 Cooperation and Penalization Mechanisms in CPCL 26
 3.3.2 The CPCL Algorithm ... 30
3.4 Comparisons between CPCL and Existing Counterparts 31
3.5 Experimental Results .. 34
 3.5.1 Results on Synthetic Data 35
 3.5.2 Results on Real Data ... 43
3.6 Summary ... 49

Chapter 4 Cooperative and Penalized EM Algorithm for Mixture Model Learning with Automatic Model Selection 52

4.1 Introduction .. 52
4.2 Overview of MWL Learning Framework 54
4.3 Cooperative EM algorithm .. 56
 4.3.1 Cooperative Mechanism 56
 4.3.2 The Proposed CEM Algorithm 58
 4.3.3 Experimental Results .. 61
4.4 Cooperative and Penalized EM Algorithm 63
 4.4.1 Cooperative and Penalized Mechanism 64
 4.4.2 The Proposed CPEM Algorithm 67
 4.4.3 Experimental Results .. 67
4.5 Comparative Study ... 71
 4.5.1 Experiment on Synthetic Data 72
 4.5.2 Real Data Set Analysis ... 75
Chapter 5 Categorical-and-Numerical-Attribute Data Clustering Based on a Unified Similarity Metric

5.1 Introduction
5.2 Overview of K-prototype and K-modes Algorithms
5.3 Clustering Problem and Object-cluster Similarity Metric
 5.3.1 Similarity Metric for Mixed Data
 5.3.2 Object-cluster Similarity Metric
5.4 Iterative Clustering Algorithm
5.5 Automatic Selection of Cluster Number
 5.5.1 Competition Mechanism
 5.5.2 Penalization Mechanism
5.6 Experiments
 5.6.1 Performance Evaluation of OCIL Algorithm
 5.6.2 Performance Evaluation of PCL-OC Algorithm
5.7 Summary

Chapter 6 Conclusions and Future Work

6.1 Conclusions
6.2 Future Work

Bibliography

Curriculum Vitae