Risk Assessments of Human Exposure to Metal(loid)s via Urban Dust and Airborne Particles in Guangzhou, South China

HUANG Minjuan

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. WONG Ming Hung
Hong Kong Baptist University
July 2013
ABSTRACT

The major objectives of the research were to investigate the contamination of metal(loid)s (Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb, Hg and Pb) in dust and airborne particles, and identify typical metal(loid)s contained in them which might lead to hazardous effects on human health. Road dust, household air-conditioning (AC) filter dust and PM$_{2.5}$ were collected in outdoor and indoor urban environments of Guangzhou. Enrichment factors (EFs) were used to assess the influence of human activity on the contamination of these metal(loid)s. Physiologically based extraction test (PBET), an in-vitro gastrointestinal method, was employed to estimate the oral bioaccessibilities of metal(loid)s. Moreover, a composite lung simulating serum, consisting of salts of sodium, ammonium and calcium as well as amino acids, was used to mimic the pulmonary condition to extract the respiratory bioaccessible metal(loid)s in PM$_{2.5}$. On the other hand, this study also attempted to investigate the accumulation of the metal(loid)s in human scalp hair, and associated it with the individual daily intakes (DIs) via dust and airborne particles. Eighty-eight scalp hair samples were collected from Guangzhou urban population. Demographic information (body weight, height, age, gender, habits of smoking and drinking, types of drinking water, duration of stay in Guangzhou, days of stay in Guangzhou per year, and hours spent in indoor environment per day) was also recorded during hair sampling. The resident’s individual DIs of metal(loid)s were calculated based on their body weights, duration of stay in Guangzhou, days of stay in Guangzhou per year, and hours spent in indoor environment per day. Lastly, hepatocellular liver carcinoma (HepG2), dermal
keratinocyte (KERTr,) and lung epithelial carcinoma (A549) were employed in MTT assay to evaluate the cytotoxicity of water-soluble fraction of road dust, AC filter dust and PM$_{2.5}$. Spike solutions of detected metal(loid)s were employed to compared their cytotoxicity with the aqueous extracts of dust and airborne particles.

Zinc was found to be one of the most abundant elements. Cu, Zn, Cd, Sb and Pb in road dust, Zn, Cd, Sb, Hg and Pb in AC filter dust, Cr, Zn, As, Cd, Sb, Hg, and Pb in PM$_{2.5}$, with their EFs larger than 5, showed significantly contaminated. In the case of non-carcinogenic risk, both ingestion of AC filter dust and inhalation of PM$_{2.5}$ were significantly hazardous to human health, especially for children (HIs>1). Furthermore, household AC filter dust and PM$_{2.5}$ could also cause potential carcinogenic risks (CRs>1.0×10$^{-06}$). Arsenic was found to be the most risky element.

Speciation (iAsIII, iAsV, MMA and DMA) of total arsenic (As) content and its bioaccessible fractions (oral bioaccessibility and respiratory bioaccessibility) contained in road dust, household AC filter dust and PM$_{2.5}$ was further investigated. Inorganic As, especially inorganic pentavalent arsenical (iAsV), was observed as the dominant species. Reduction of iAsV to inorganic trivalent arsenical (iAsIII) occurred in both in-vitro gastrointestinal and lung simulating extraction models. The inorganic As species was found to be the exclusive species for absorption through ingestion and inhalation of dust and airborne particles, which was the other important sources of exposure to inorganic As, in addition to drinking water and food consumption.

As another heavy metal of human health concern, total Hg (THg) and methyl Hg (MeHg) were also analyzed in the dust and airborne particles. The concentrations of
THg and MeHg were observed relatively lower in peri-urban district, compared with other urban districts (such as scenic parks, educational districts, traffic pivotal districts, residential districts and commercial districts) in Guangzhou. The significantly higher THg concentration (p<0.05) in household AC filter dust than that in road dust indicated that the household environment provided other pollution sources of Hg. Although the proportion of MeHg in THg contained in each type of particles was extraordinarily low (less than 0.5%), the DIs of MeHg accounted for 2.7-14.4% of THg via ingestion and inhalation of dust and airborne particles.

The concentrations of Cr, Ni and As in human scalp hair showed at the upper extreme around the world. Inorganic As$_{\text{III}}$ was the most abundant As species. Body mass index (BMI) and body area surface (BAS) were found to be associated with the accumulation of metal(loid)s in human hair interactively with age or duration, based on the multiple linear regression analysis. Additionally, nutritional and physical status, reflected by BMI and BAS, were observed as the exclusive factors associating As speciation in human hair. The environmental exposures to urban dust and airborne particles were significantly correlated to the concentrations of Cd ($R^2=0.306$, p=0.005) and Ni ($R^2=0.333$, p=0.002) in human scalp hair.

The effects of aqueous extracts of dust and PM on cell growth were dependent on exposure time and the exposed concentration. The LC_{20} of PM$_{2.5}$ for A549 cell were about one order of magnitude lower than those of road dust and AC filter dust for KERTTr cell and HepG2 cell. The LC_{20} of dust aqueous extract was negatively correlated to the water-soluble metal(loid)s contained in dust particles (KERTr:
p=0.004; HepG2: p<0.001). However, no significant correlation was observed between the soluble metal(loid)s in PM$_{2.5}$ and LC$_{20}$ for A549 cell (p>0.05). The LC$_{20}$s for dust and airborne particles were much lower than those caused by spike solutions.
TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES .. xiv

LIST OF FIGURES ... xvii

LIST OF ABBREVIATIONS ... xix

CHAPTER 1 GENERAL INTRODUCTION ... 1

1.1 Research Background ... 1

1.2 Literature Review ... 4

 1.2.1 Essential Metals ... 4

 1.2.2 Selected Nonessential Metal(loid)s ... 8

 1.2.3 Sources of Metal(loid)s in Urban Atmosphere .. 12

 1.2.4 Dust .. 15

 1.2.5 Particulate Matter (PM) .. 15

 1.2.6 House Dust ... 16

 1.2.7 Air-conditioning (AC) Filter Dust ... 17

 1.2.8 Exposure to Dust and PM .. 18

1.3 Research Objectives ... 18
1.4 Research Framework

CHAPTER 2 CONTAMINATION AND RISK ASSESSMENT (BASED ON BIOACCESSIBILITY VIA INGESTION AND INHALATION) OF METAL(LOID)S IN DUST AND AIRBORNE PARTICLES FROM GUANGZHOU URBAN AREA, CHINA

2.1. Introduction

2. 2 Materials and Methodology

2.2.1 Sampling and Sample Preparation

2.2.2 Determination of Total Metal(loid)s

2.2.3 Determination of Bioaccessible Metal(loid)s

2.2.4 Quality Assurance and Quality Control (QA/QC)

2.2.5 Calculations

2.3 Results and Discussion

2.3.1 Household PM$_{2.5}$ Levels

2.3.2 Total concentrations of metal(loid)s

2.3.3 Enrichment Factors

2.3.4 Oral Bioaccessibility of Metal(loid)s in Road Dust and AC Filter Dust

2.3.5 Inhalation Bioaccessibility of Metal(loid)s in PM$_{2.5}$

2.3.6 Estimation of Daily Intakes (DIs) and Risk Assessment of Metal(loid)s

2.4 Conclusion

CHAPTER 3 ARSENIC SPECIATION IN TOTAL CONTENTS AND BIOACCESSIBLE FRACTIONS IN DUST AND AIRBORNE PARTICLES
RELATED TO HUMAN INTAKES IN URBAN AREA OF GUANGZHOU, CHINA .. 68

3.1 Introduction ... 68

3.2 Materials and Methodology ... 71

3.2.1 Sampling and Sample Preparation .. 71

3.2.2 Determination of pH Values, Organic Carbon (OC) and Dissolved Organic Carbon (DOC) in Dust Particles .. 71

3.2.3 Extraction of Total Contents, Bioaccessible Fraction and Species of As. 72

3.2.4 Determination of total As and Its Species .. 73

3.2.5 Calculations of Bioaccessibility, Mobility and Daily Intakes (DIs) 74

3.3 Results and Discussion ... 75

3.3.1. Dust Properties and Speciation of Total As Content ... 75

3.3.2 As Speciation Through in-vitro Gastro-intestinal Digestion of Road Dust and Household AC Filter Dust ... 81

3.3.3 Speciation on respiratory bioaccessibility of As in PM$_{2.5}$.. 88

3.3.4 Estimation of DIs of Inorganic As ... 91

3.4 Conclusion ... 94

CHAPTER 4 TOTAL MERCURY AND METHYL MERCURY IN DUST AND AIRBORNE PARTICLES RELATED TO ACCUMULATION IN HUMAN SCALP HAIR ... 95

4.1 Introduction ... 95

4.2 Materials and Methodology ... 97
CHAPTER 5 METALS AND ARSENIC SPECIES ACCUMULATED IN
HUMAN SCALP HAIR IN RELATION TO URBAN CONDITIONS IN
GUANGZHOU, CHINA

5.1 Introduction

5.2 Materials and methodology

5.2.1 Sample Collection and Pre-treatment

5.2.2 Determination of Total metal(loid)s Contents

5.2.3 Determination of As Species (iAsIII, iAsV MMA and DMA)

5.2.4 Calculations

5.3 Results and Discussion

5.3.1 Concentrations of Metal(loid)s in Human Hair

5.3.2 As speciation in Human Hair
5.3.3 Influence Factors Affecting Metal(loid)s and As Speciation in Human Hair

5.3.4. Relationships between concentrations of metal(loid)s in human hair and daily intakes (DIs) via outdoor and indoor dust and airborne particles

5.4 Conclusion

CHAPTER 6 POTENTIAL CYTOTOXICITY OF WATER-SOLUBLE FRACTION OF DUST AND PARTICULULATE MATTERS BASED ON THREE HUMAN CELL LINES

6.1 Introduction

6.2 Materials and Methodology

6.2.1 Sampling and Sample Preparation

6.2.2 Determination of Concentrations of Water-soluble Metal(loid)s in Dust and PM

6.2.3 Cell Culture

6.2.4 Preparation of Treated Solutions

6.2.5 MTT Assay

6.2.6 Cell Proliferation

6.2.7. Calibration of Cell viability

6.2.8 Calculations of Mortality LC_{20} and LC_{50}

6.3 Results and Discussion

6.3.1 Concentrations of Metal(loid)s in Water-soluble Fraction of Dust and PM
6.3.2 Cell Proliferation .. 161

6.3.3 Cytotoxicities (LC$_{50}$ and LC$_{20}$) of Aqueous Extracts of Dust and PM in Early Exposure Period (First 24 Hours) ... 164

6.3.4 Correlations between LC$_{20}$ of Aqueous Extracts and Water-soluble Metal(loid)s ... 168

6.4 Conclusion ... 173

CHAPTER 7 GENERAL DISCUSSION AND CONCLUSIONS174

7.1 Introduction .. 174

7.2 High Concentrations of Household PM$_{2.5}$... 175

7.3 Contaminations of Metal(loid)s in Road Dust, Household AC Filter Dust and PM$_{2.5}$.. 178

7.4 Which Elements should be of More Concern? ... 179

7.4.1 Arsenic (As) and Its Species (iAsIII, iAsV, MMA and DMA) 180

7.4.2 Total mercury (THg) and Methyl mercury (MeHg) ... 182

7.5 Which is the More Predominant Exposure Route to Metal(loid)s via Particles? ... 184

7.6 Accumulation Levels of Metal(loid)s, THg, MeHg and As Species (iAsIII, iAsV, MMA and DMA) in Human Scalp Hair ... 184

7.7 Potential Cytotoxicity of Dust and Airborne Particles .. 186

7.8 Regulations of Particles and Atmospheric Metal(loid)s ... 188

7.9 Conclusions .. 190

7.10 Limitations of the Research ... 197
7.11 Future research ... 198

REFERENCES ... 200

Appendix 1 ... 232

Appendix 2 ... 233

PUBLICATION ... 234

CURRICULUM VITAE ... 237