Risk Assessment of Human Exposure to Persistent Organic Pollutants Associated with Air Particulates and Settled Dust in Two Urban Centers of Pearl River Delta

WANG Wei

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. Wong Ming Hung

Hong Kong Baptist University

March 2013
Abstract

The major objectives of this research were to analyze concentrations of persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and phthalates esters) in air particulate and settled dust samples in urban areas of Guangzhou (GZ) and Hong Kong (HK), in the Pearl River Delta; investigate the factors governing POPs distribution in air particles and dust; evaluate the exposure risks of POPs via non-dietary routes of inhalation and ingestion; and assess the biological effects of settled dust.

\sumPAHs in the urban surface dust ranged from 0.84 to 12.3 µg/g with a mean of 4.80 µg/g and \sumPBDEs from 40.6 to 8.30 \times 10^3 with a mean of 998 ng g$^{-1}$ for PBDEs. Two major PAHs inputs to urban surface dust were identified as vehicle emissions (51.9%) and coal combustion (26.8%), while the major source for PBDEs was the commercial deca-BDE mixtures. The Incremental Lifetime Cancer Risk (ILCR) due to human exposure to PAHs associated with urban surface dust in GZ was 3.03×10^{-6} for children and 2.92×10^{-6} for adults. PBDE exposure via street dust (2.64×10^{-2} µg/kg-bw/day for children, 2.87×10^{-3} µg/kg-bw/day for adults) was lower than that of house dust and dietary intake.

Home PM$_{2.5}$ bound PAHs in GZ ranged from 10.0 to 61.9 ng/m3, significantly higher than those in HK (0.72 to 4.47 ng/m3). A similar PAH pattern was found in home PM$_{2.5}$, TSP and hair (dominated by Nap and Phe), but different from home dust. Pyrene (Pyr) and fluoranthene (Flu) in home dust significantly correlated with that in hair ($r = 0.69$; 0.55, $p < 0.05$), but no significant correlation was found between PAHs in hair and that in PM$_{2.5}$. The lung cancer risk based on home PM$_{2.5}$ bound PAHs exposure was high in homes of GZ (10^{-4}), exceeding the excess cancer risk (10^{-5}) associated with home dust intake. Non-dietary exposure (air and dust) explained for PAHs exposure 1-3 times higher than fish consumption and contributed to at least 12.2-33.5% and 0.7-14.5% of total TEQs$_{PAHs}$ exposure for children and adults, respectively.
∑PBDEs (53 to 2025 mean 240 pg m\(^{-3}\)) and OCPs (28.7 to 273 mean 142 pg m\(^{-3}\)) in home PM\(_{2.5}\) of GZ were significantly higher than those of HK (PBDEs: 0.25-160, mean 44 pg m\(^{-3}\); OCPs: 19.9-125, mean 39 pg m\(^{-3}\)). The constant C\(_{\text{particle}}\)/C\(_{\text{dust}}\) values suggest that sorption is the dominant mechanism through which PBDEs/OCPs are associated with settled dust and airborne particles. Total pesticides in hair samples ranged from 65.6 to 405 ng g\(^{-1}\), with \(p,p'\)-DDE being the dominant congener (nd to 274 ng g\(^{-1}\)). No significant correlation was found for OCPs in air particulates/dust with hair samples. Dust ingestion (48.6-80.9\%) and dietary intake (59.4-96.4\%) were the two predominant PBDEs exposure routes respectively for toddlers and adults. Although non-dietary exposure resulted in a low exposure of OCPs under low dust intake (4.16 and 55 mg d\(^{-1}\) for adults and children), however explained for at least comparable daily intake with seafood intake, especially for children (100 and 200 mg d\(^{-1}\)).

The levels of ∑OCP indoor and outdoor dust of GZ (median 520, 171 µg kg\(^{-1}\)), were significantly higher than those of HK (115, 130). ∑PCBs, varied between 51.9-264.3 and 4.02-227.9 ng g\(^{-1}\) in indoor and outdoor dust of GZ, were significantly higher than those of HK (17.4-137.4; 7.8-113.7 ng g\(^{-1}\)). Different cytotoxic effects on human hepatocellular live carcinoma cell (HepG2) and human skin keratinocyte cell (KERTr) lines were observed based on the extracts of outdoor and indoor dust. POPs enrichment for both PCBs and OCPs decreased with the increased particle size. Dust ingestion contributed to significantly higher exposure dose for children than adults, due to the high dust intake rate. Dust intake predominated in non-dietary OCPs exposure and had a high contribution to total OCP exposure for adults (3.8\%) and children (24.4\%). The cancer risks related to OCPs associated with indoor dust were moderate (below 10\(^{-4}\)), while more alarmingly, 42\% of residents in GZ registered risks >10\(^{-5}\). However, when bioaccessible OCPs/PCBs were used in risk assessment, daily intake and health risk were found to be significantly lower than the solvent-extractable levels.

Phthalates varied from 4.95 to 2217 µg g\(^{-1}\) in indoor dust, significantly higher than those of outdoor dust (1.75 to 869 µg g\(^{-1}\)), collected from GZ and HK.
Di-2-ethylhexyl phthalate (DEHP) dominated in all dust samples. The cancer risks associated with DEHP via indoor dust were high (10^{-5}-10^{-4}), with 10% of houses of GZ and HK estimated with unacceptable cancer risks ($>10^{-4}$). ∑PAHs in indoor dust of GZ homes varied from 1.2-22.2 µg g$^{-1}$ and 52% of homes were estimated with unacceptable cancer risks ($>10^{-4}$) via dust exposure, which should be of concern. Particle size was negatively correlated to both PAHs and phthalate accumulation in dust. Significantly higher bioaccessible PAHs and phthalates were found in 0-63 µm than 280-2000 µm fraction. Particle size was found as a missing factor which exerted a significant impact on PAHs related cancer risks. In vitro cytotoxicity of dust extracts on Human T cell lymphoblast leukemic cell line (CCRF-CEM) indicated by the Lethal Concentration 50 (LC$_{50}$) decreased with the increase of particle size of dust. Particle size would be a missing factor impacting greatly on risk assessment of dust associated with PAHs/Phthalates.
Table of Contents

Declaration...i
Abstract...ii
Acknowledgements...v
Table of Contents..vi
List of Tables..xii
List of Figures...xiv
Abbreviations...xx

CHAPTER 1 GENERAL INTRODUCTION..1
 1.1 Research background..1
 1.2 Recent studies on POPs pollution in indoor dust..2
 1.2.1 Indoor dust sampling and preparation..2
 1.2.2 POPs pollution in indoor dust...3
 1.3 Recent studies on POPs pollution in outdoor dust..3
 1.3.1 Outdoor dust sampling and preparation..4
 1.3.2 POPs pollution in outdoor dust...5
 1.4 Non-dietary exposure...5
 1.4.1 POPs exposure pathways...7
 1.4.2. Exposure to POPs via indoor air inhalation and dust ingestion.........................7
 1.5 Biological effect of indoor dust and outdoor dust...8
 1.6 Oral bioaccessibility studies...8
 1.7 PM$_{2.5}$ pollution in indoor and outdoor environment..8
 1.7.1 PM$_{2.5}$ pollution in China...9
 1.7.2 Air sampling and analysis..9
 1.7.3. PM$_{2.5}$ bound POPs..11
 1.8 Mutagenicity and cytotoxicity of air particulate...14
 1.9 Risk assessment calculation...14
 1.9.1 Non-cancer risk assessment..14
 1.9.2 Cancer risk calculation..15
1.10 Research objectives...15
1.11 Framework..16

CHAPTER 2 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND
POLYBROMINATED DIPHENYL ETHERS (PBDES) IN URBAN SURFACE
DUST OF GUANGZHOU, CHINA: STATUS, SOURCES AND HUMAN
HEALTH RISK ASSESSMENT...18
2.1 Introduction...18
2.2 Materials and methods..19
 2.2.1 Sampling site description...19
 2.2.2 Sampling of dust ..20
 2.2.3 Extraction and analysis of PAHs.......................................22
 2.2.4 Analysis of PBDEs..22
 2.2.5 QA/QC ..23
 2.2.6 Risk assessment..24
 2.2.7 Data analysis...24
2.3 Results and discussion...26
 2.3.1 PAHs in urban surface dust of Guangzhou....................26
 2.3.2 PBDEs in urban surface dust of Guangzhou..................40
2.4 Conclusion...52

CHAPTER 3 RISK ASSESSMENT OF NON-DIETARY EXPOSURE TO
POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) VIA PM$_{2.5}$, TSP AND
DUST IN HOME AND THE IMPLICATIONS FROM HUMAN HAIR........54
3.1 Introduction...54
3.2 Materials and methods..55
 3.2.1 Air particulate and dust sampling..................................55
 3.2.2 Extraction and analysis of PAHs.......................................58
 3.2.3 QA/QC ..58
 3.2.4 Risk assessment..59
 3.2.5 Data analysis...61
3.3 Results and discussion...61
CHAPTER 3 HEALTH RISK ASSESSMENT OF EXPOSURE TO POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) CONTAINED IN RESIDENTIAL AIR PARTICULATE AND DUST AROUND THE PEARL RIVER DELTA…………………………61
3.3.1 PM$_{2.5}$ pollution at home……………………………………………………61
3.3.2 PAHs in home PM$_{2.5}$, TSP and dust ……………………………………63
3.3.3 PAHs compositional characteristics………………………………………66
3.3.4 PAHs in human hair and its relationship with home PM$_{2.5}$/dust………66
3.3.5 Sources of home PAHs……………………………………………………70
3.3.6 Carcinogenic toxicity of home particulates and dust………………….73
3.3.7 Health risk assessment of home PAHs exposure……………………….76
3.4 Conclusion……………………………………………………………………78

CHAPTER 4 HEALTH RISK ASSESSMENT OF EXPOSURE TO POLYBROMINATED DIPHENYL ETHERS (PBDES) AND ORGANOCHLORINE PESTICIDES (OCPS) CONTAINED IN RESIDENTIAL AIR PARTICULATE AND DUST AROUND THE PEARL RIVER DELTA…81
4.1 Introduction……………………………………………………………………81
4.2 Materials and methods………………………………………………………83
 4.2.1 Extraction and analysis of PBDEs………………………………………83
 4.2.2 Analysis of OCPs…………………………………………………………83
 4.2.3 QA/QC……………………………………………………………………84
 4.2.4 Data analysis……………………………………………………………85
4.3 Results and discussion……………………………………………………….85
 4.3.1 PBDEs distribution in home PM$_{2.5}$, TSP and dust…………………..85
 4.3.2 PBDEs composition and profiles in home particles…………………87
 4.3.3 Distribution of PBDEs among home particles of different sizes…….91
4. 3.4 Urban to suburban change of PBDEs in home air……………………94
 4. 3.5 Health risk assessment of home PBDEs exposure…………………..97
 4. 3.6 OCPs distribution in home PM$_{2.5}$, TSP and dust…………………102
 4. 3.7 Composition and accumulation of OCPs in home particles………..104
 4. 3.8 Partition of OCPs in home………………………………………………106
 4. 3.9 Health risk assessment of home OCPs exposure…………………..109
 4. 3.10 OCPs in human hair and the association with home air and dust…111
4.4 Conclusion……………………………………………………………………114
CHAPTER 5 RISK ASSESSMENT OF POLYCHLORINATED BIPHENYLS (PCBs) AND ORGANOCHLORINE PESTICIDES (OCPs) CONTAINED IN INDOOR AND OUTDOOR DUSTs AND IN VITRO CYTOTOXIC EFFECT OF DUST EXTRACTS ON HEPG₂ AND KERTr CELLS...115

5.1 Introduction..115
5.2. Materials and methods..117
 5.2.1. Sampling..117
 5.2.2. Extraction and analysis of PCBs and OCPs..117
 5.2.3 Bioaccessibility determination in dust..118
 5.2.4 QA/QC..119
 5.2.5 Risk assessment calculation..120
 5.2.6 Cell culture and MTT assay..123
 5.2.7 Data analysis..124
5.3 Results and discussion..125
 5.3.1 PCBs...125
 5.3.2 OCPs...136
 5.3.3 LC₅₀ of outdoor and indoor dust...150
5.4 Conclusion..156

CHAPTER 6 SIZE FRACTION EFFECT ON PHTHALATE ESTERS AND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) ACCUMULATION, BIOACCESSIBILITY AND IN VITRO CYTOTOXICITY OF INDOOR/OUTDOOR DUST AND RISK ASSESSMENT OF HUMAN EXPOSURE...157

6.1 Introduction..157
6.2 Materials and methods..158
 6.2.1 Sampling..158
 6.2.2 Extraction and analysis of phthalate and PAHs...158
 6.2.3 Bioaccessibility and risk assessment...159
 6.2.4 QA/QC..159
 6.2.5 Cell culture and MTT assay..160
6.2.6 Data analysis...161
6.2.7 Calculation...161
6.3 Results and discussion..163
6.3.1 Spatial difference and profiles of PAHs in home dust........163
6.3.2 Household pollution factors...165
6.3.3 PAHs size fraction in dust...168
6.3.4 The effect of particle size on bioaccessible fraction of PAHs...168
6.3.5 Impact of dust particle size and bioaccessibility on PAH exposure risk assessment..171
6.3.6 Phthalates esters in dust..173
6.3.7 Size fraction effect on the accumulation of phthalate esters...176
6.3.8 Size fraction effect on bioaccessibility of phthalates..........179
6.3.9 Daily intake of phthalates...181
6.3.10 Risk assessment...184
6.3.11 Size fraction effect on cytotoxicity, based on CCRF-CEM cell line.....186
6.4 Conclusion...189

CHAPTER 7 GENERAL DISCUSSION AND CONCLUSIONS...............191
7.1 Introduction...191
7.2 Distribution of PAHs and PBDEs in urban street dust.............192
7.2.1 The levels and distribution of PAHs and PBDEs in urban street dust.....192
7.2.2 The profile and sources of PAHs and PBDEs in urban street dust........192
7.2.3. Health risk assessment of outdoor dust exposure...............192
7.3 Non-dietary exposure of POPs via home dust and air particulates......194
7.3.1 PM$_{2.5}$ pollution in home environment........................194
7.3.2 POPs in home PM$_{2.5}$...194
7.3.3 The impact of air particle size on POPs accumulation...........196
7.3.4 The mechanism for POPs partitioning between home PM$_{2.5}$/TSP and dust...196
7.3.5. Correlations between POPs in air particulate/dust and human hair......199
7.3.6. Non-dietary exposure of POPs via inhalation and dust intake.........199
7.3.7 Cancer risk assessment of non-dietary exposure to PAHs 201
7.4 Risk assessment of POPs exposure via indoor and outdoor dust 202
7.4.1 Phthalates, PCBs and OCPs in indoor and outdoor dust 202
7.4.2 The impact of dust particle size on Phthalates, PCBs and OCPs accumulation ... 202
7.4.3 Bioaccessibility of PCBs and OCPs in dust 204
7.4.4 ADD of POPs via indoor dust ... 204
7.4.5 Risk assessments of phthalates, PCBs and OCPs exposure via dust 205
7.5 Biological effects of indoor and outdoor dust 205
7.6 Household pollution factors .. 207
7.7 The impact of size fraction on accumulation, bioaccessible fraction of POPs in dust and the cytotoxicity on CCRF cell 209
7.7.1 The effects of particle size on PAHs accumulation 209
7.7.2 The effects of particle size on bioaccessible fraction of POPs 209
7.7.3 The impact of particle size on human exposure risks via dust 211
7.7.4 The impacts of particle size on the cytotoxicity of dust 212
7.8 Total cancer risk due to POPs exposure via dust in the present study 212
7.9 Relevant advisories on the basis of human health risk of dust exposure 213
7.10 General conclusions .. 214
7.11 Limitations of the present study ... 217
7.12 Future work ... 217

References ... 220

Publications .. 250

Curriculum Vitae ... 252