Injection Characteristics of Transport Layers in PIN OLED

FUNG Ka Man

A thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Philosophy

Principal Supervisor: Prof. CHEAH Kok Wai

Hong Kong Baptist University

December 2011
ABSTRACT

Efficient injection of current into OLED is one of the critical factor for high performance OLED. It can be achieved by doping, which is a commonly adopted method to tune the energy level in the transport layer. Cs₂CO₃ is one of the more widely used dopants in electron injection material. However there is ambiguity in its function once it is doped into the material. In this work, the function of Cs₂CO₃ and also its chemical status when it is doped into four electron transport materials has been examined. It is found that Cs₂CO₃ can decompose into its oxide and hydroxide form when doped. They were found to occupy different energy levels with respect to the LUMO and HOMO of the host materials. The finding clarifies the role of Cs₂CO₃ in enhancement of OLED emission efficiency and the impact of metal cathodes on the Cs₂CO₃ doped electron transport layer (ETL) has been investigated. As balance of charge transport is also an important factor to get a high performance OLED, the mobility of Cs₂CO₃ doped ETL has been estimated by studying the movement of recombination zone.

White light organic light emitting devices (WOLED) can be contributed to solid-state lighting application. High power efficiency of WOLED can be achieved by incorporating p-i-n structure. By inserting PEDOT: PSS as a hole injection layer combining with the use of Cs₂CO₃ doped ETL, the barrier for carrier injection would be reduced, leading to the effective injection of holes and electrons. The optimum p-i-n WOLED structure of ITO/ PEDOT: PSS (60nm)/ NPB (40nm)/ mADN: EY53 (4.5nm)/ mADN: BUBD-1 (40.5nm)/ Bphen (5nm)/ Bphen: Cs₂CO₃ (25nm)/ Al achieves a maximum power efficiency of 15.2 lm/W.
TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES .. viii

LIST OF FIGURES .. x

CHAPTER 1 INTRODUCTION TO ORGANIC LIGHT EMITTING DIODES ... 1

1.1 History and development of OLED architectures .. 1

1.2 OLED materials .. 4

1.2.1 Hole transport materials .. 4

1.2.2 Electron transport materials ... 5

1.2.3 Dyes .. 7

1.3 Characteristics and commercial applications of OLEDs .. 9

1.4 Research focus .. 14

CHAPTER 2 FUNDAMENTALS OF OLED .. 15

2.1 Electronic structure of small molecule organic materials .. 15

2.2 Doping fundamentals of organic semiconductors ... 16

2.2.1 p-type doping .. 17

2.2.2 n-type doping .. 18

2.3 Operating mechanisms .. 20

2.3.1 Conventional OLED .. 20

2.3.2 P-I-N OLED .. 23

2.4 Characterization of OLED .. 25

2.4.1 Current-Voltage characteristics .. 25

2.4.2 Luminance and efficiency ... 26

2.4.3 Color purity .. 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4</td>
<td>Operational stability</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Charge transport of organic semiconductors</td>
<td>30</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Charge balance of transport layers in OLED</td>
<td>30</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Mobility estimation by finding the recombination zone of OLED</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Interface and surface study of organic thin films</td>
<td>33</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Ultraviolet-photoelectron spectroscopy</td>
<td>36</td>
</tr>
<tr>
<td>2.6.2</td>
<td>X-ray photoelectron spectroscopy</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Organic materials used</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Substrate cleaning and pre-treatment</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Thin film deposition</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Spin coating</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Thermal evaporation</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Device encapsulation</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Electrical and optical characterization</td>
<td>48</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Optical and electrical study</td>
<td>48</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Electronic band structure</td>
<td>51</td>
</tr>
<tr>
<td>3.5.3</td>
<td>OLED performance</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Motivation</td>
<td>57</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Review of n-dopants</td>
<td>58</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Previous works on Cesium Carbonate</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Host effect on Cesium Carbonate</td>
<td>62</td>
</tr>
<tr>
<td>4.2.1</td>
<td>UPS study on energy alignments of Cs₂CO₃ in different hosts</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Electron only devices of doping Cs₂CO₃ in different electron transporters</td>
<td>65</td>
</tr>
</tbody>
</table>
4.3 Effectiveness of Cesium Carbonate as an injection material or n-dopant ...67
4.3.1 UPS study of Cs$_2$CO$_3$ acting different roles67
4.3.2 Characterization of OLEDs with the use of Cs$_2$CO$_3$70
4.4 Injection mechanism of Cesium Carbonate ..75
4.4.1 Chemical composition of Cs$_2$CO$_3$...75
4.4.2 Feasibility of applying Cs$_2$CO$_3$ on different metal cathodes82
4.5 Transport property of Cesium Carbonate doped electron transporter85
4.5.1 Investigation of recombination zone shifting of different OLEDs’ structures ..86
4.5.2 Calculations and mobility estimation ...96
4.5.3 Comparison of OLEDs’ performances using doped and undoped ETL ..101
4.6 Summary ...105

CHAPTER 5 WHITE LIGHT OLED WITH P-I-N STRUCTURE106
5.1 Review of p-dopants ..106
5.2 OLED performances with different p-i-n structures109
5.3 Properties of PEDOT: PSS ...110
5.4 Surface morphology of PEDOT: PSS ..112
5.5 Optical and electrical properties of PEDOT: PSS thin film114
5.5.1 Transmittance ...114
5.5.2 Conductivity ...116
5.6 Optimization of WOLED using PEDOT: PSS and Bphen: Cs$_2$CO$_3$117
5.6.1 Thickness of hole transport layer ..117
5.6.2 Thickness of electron transport layer121
CHAPTER 6 CONCLUSION

6.1 Conclusion

6.2 Future work

APPENDIX-I - Operating procedures of the contact AFM

APPENDIX-II – UPS spectrum of Cs₂CO₃ doped in diff.hosts

APPENDIX-III – UPS spectrum of Cs₂CO₃ acting diff.roles

LIST OF REFERENCES

CURRICULUM VITAE