Study of Fluctuations in Gene Regulation Circuits with Memory

Xue AO

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Philosophy

Principal Supervisor: Professor Lei-Han TANG

Hong Kong Baptist University

January 2012
Abstract

The small number and transient activity of molecules involved in gene expression can lead to significant fluctuations in intracellular mRNA and protein concentrations. There have been numerous recent studies devoted to the consequences of such noise in observed cell-to-cell phenotypic differences in an isogenic population. Previously, stochastic models are developed to explore the fluctuation behavior in the copy number of key proteins, as characterized by their probability distribution. Theoretical treatments usually start from the master equation that describes the time evolution of the distribution function. However, this approach encounters unavoidable difficulties in the more general case of non-Markovian processes, i.e., stochastic processes with memory. In this thesis, we study a protein synthesis process using a birth-and-death model that incorporates multiple transformation steps in a single reaction. The non-Markovian feature of the model has to do with a non-Poisson distribution of the lifetime of the molecule in this combined reaction step. A modified Gillespie algorithm is implemented to perform simulations of the non-Markovian process. We characterize the fluctuations of the protein copy number by the Fano factor and the autocorrelation function. The presence of a feedback loop in the model introduces oscillations in the autocorrelation function. We find that, as the number of steps within the birth process increases, the amplitude of the oscillation increases. The same is true when the number of reaction steps in death process. We study how the correlation time of the oscillation grows and give some explanations on the underlying mechanism. Our results contribute to a better understanding of the effect of multiple steps in gene expression circuits with autoregulation.
Table of Contents

Declaration .. i
Abstract .. ii
Acknowledgements iii
Table of Contents iv
List of Figures .. viii

Chapter 1. Introduction

1.1 Noise biology ... 1
1.2 Experimental studies of the noise in gene expression
 1.2.1 Measuring noise 2
 1.2.2 Experimental findings 3
1.3 Models of stochastic gene expression and theoretical studies
 1.3.1 Development of model 4
 1.3.2 Analytical methods previously used 5
1.4 Aims of this work 6
1.5 Organization of the thesis 7

Chapter 2. Markov process: analytical and simulation methods

2.1 Overview of the stochastic processes
 2.1.1 Basic concepts 8
 2.1.2 Characterization of the fluctuation 9
2.2 Markov process 11
2.3 Theoretical methods
 2.3.1 Master equation 12
 2.3.2 Langevin equation 13
2.4 Numerical method for simulation: Gillespie algorithm
 2.4.1 General idea of the algorithm 16
Chapter 3. A non-Markovian birth-and-death model of gene regulation

3.1 Biological background

3.1.1 Multisite phosphorylation: multi-steps birth process-------------------18
3.1.2 Ubiquitination of protein: multi-steps decay process-------------------18

3.2 Non-markovian model ---19

3.3 Numerical simulation: modified Gillespie algorithm

3.3.1 General idea--20
3.3.2 Algorithm description---21

Chapter 4. Analytical and simulation results

4.1 Derivation of analytical results in the Markovian case

4.1.1 Solution of the steady-state distribution of the molecular number---23
4.1.2 Calculation of the autocorrelation function------------------------24
4.1.3 Noise strength as a function of the feedback parameter K---------26
4.1.4 Correlation time as a function of the feedback parameter K-------26

4.2 Comparison of analytical and numerical results in the Markovian case

4.2.1 Distribution of the molecular number in the steady state ---------27
4.2.2 Noise characteristics as a function of the feedback parameter K---28
4.2.3 Effect of the average number of molecule in the steady state------30

4.3 Verification of the modified Gillespie algorithm in the Markovian case

4.3.1 Time course of the molecular number from a single run------------31
4.3.2 Ensemble average and variance of the molecular number-----------32

4.4 Analytical study of non-Markovian case with multi-steps in birth process 33

4.5 Numerical study of non-Markovian case by modified Gillespie algorithm

4.5.1 Time course of the molecular number evolution for a single run----37
4.5.2 Molecular number distribution in the steady state -----------------40
4.5.3 Autocorrelation function and power spectral density--------------41
4.5.4 Effect of the step number parameters n_1 and n_2--------------48
Chapter 5. Discussions and Conclusion

5.1 Stability analysis in an extreme case with a fixed reaction time in birth process---52
5.2 Relation to previous work on oscillatory phenomena in biological systems
 5.2.1 Necessary elements for oscillation--------------------------------54
 5.2.2 Multiple steps makes a sharp distribution of waiting time ----------54
5.3 Conclusion and outlook ---55

Reference ---57

Appendix: C code of modified Gillespie algorithm --------------61

Curriculum Vitae ---68