Computational Methods and Mechanisms for Evaluating and Enhancing the Robustness of Energy Distribution Systems

SHI Benyun

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Professor LIU Jiming

Hong Kong Baptist University

August 2012
Abstract

Energy distribution systems, such as pipeline networks and electric power systems, are complex due to not only the connectivity of distribution infrastructures but also the interactivity of their associated heterogeneous stakeholders. Historical data has shown that accidents, whether natural or man-made hazards, can severely damage the distribution systems, and potentially create various social and economic impacts. When this happens, disruptions on one part of a distribution system can spread to other parts, and even cause cascading failures in the system. Therefore, in order to take preventive measures, it would be desirable to evaluate, and if necessary to enhance, the robustness of energy distribution systems. Here, by robustness we mean the ability of maintaining system-level performances in the face of the disruptions. By leveraging the local-global relationships between interactions among the stakeholders at the microscopic (local) level and the desired performance of the systems at the macroscopic (global) level, this thesis further addresses the problem of how to enhance the robustness of distribution systems from a self-organizing systems perspective.

Specifically, this work adopts a network approach to modeling energy distribution systems by taking into consideration the energy flow dynamics in the systems and the connectivity of distribution infrastructures. On such networks, there exist two major types of disruptions, i.e., (i) supply disruptions and (ii) structural disruptions. With respect to supply disruptions, the thesis introduces the functional robustness of a distribution network to reflect its ability of maintaining a supply-demand balance on individual nodes. To computationally evaluate the functional robustness, here
we present a notion of network entropy to macroscopically characterize the energy flow dynamics on the network, based on a random walk theory. In addition, we look into how microscopic evaluation based on a failure spreading model helps us further determine the extent to which disruptions on one node may affect the others. In this work, we take the interstate natural gas distribution network in the U.S. as an example to demonstrate these concepts and methods.

Based on the macroscopic evaluation, we are then able to solve the problem of how to enhance the functional robustness of a distribution network by controlling energy flows on the network. From a self-organizing systems perspective, we propose a decentralized computational pricing mechanism, where each node needs only to communicate with its distribution neighbors by sending a “price” signal to its upstream neighbors and receiving “price” signals from its downstream neighbors. By doing so, each node can determine its outflows (i.e., distribution strategy) by maximizing its own payoff function. In this work, we carry out simulations on the U.S. natural gas pipeline network to validate the convergence and effectiveness of our proposed mechanism.

With respect to structural disruptions, the thesis addresses the problem of how to prevent cascading failures in an electric power system in the face of line contingencies. Specifically, we present two decentralized load-shedding algorithms. The coercive load-shedding algorithm is designed to secure the system by quickly shedding a necessary amount of loads and generation, while the fair load-shedding algorithm is to compute the shed amount of individual participants by taking into consideration the heterogeneity of their shed costs. Moreover, an embedded feedback mechanism in the fair load-shedding algorithm enables the real-time adjustment of compensations for each load-shedding participant based on the proportional fairness criterion. The properties of the two load-shedding algorithms are demonstrated by carrying out simulation-based experiments on the IEEE 30 bus system.

In summary, this thesis focuses on the development of computational methods and mechanisms for evaluating and enhancing the robustness of energy distribution
systems from a self-organizing systems perspective. The demonstrated results will offer policy makers, planners, and system managers with further insights into, as well as new tools for, emergency planning and design improvement for energy distribution infrastructures.
Table of Contents

Declaration i

Abstract ii

Acknowledgements v

Table of Contents vii

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Research Domain ... 1
1.2 Motivations and Objectives 5
 1.2.1 Energy Distribution Systems 5
 1.2.2 A Self-organizing Systems Perspective 7
 1.2.3 The Robustness of Energy Distribution Systems 8
1.3 Contributions and Significance 10
 1.3.1 Evaluating the Robustness of Distribution Networks 10
 1.3.2 Enhancing Functional Robustness 11
 1.3.3 Preventing Cascading Failures 13
1.4 Structure of the Thesis .. 13

Chapter 2 Literature Review 15
Chapter 3 Evaluating the Robustness of Energy Distribution Networks

3.1 Introduction ... 33
 3.1.1 The Robustness of Distribution Networks 34
 3.1.2 Related Work .. 35

3.2 Problem Statements 38

3.3 Macroscopic and Microscopic Evaluation Methods 39
 3.3.1 Network Entropy 39
 3.3.2 The Failure Spreading Model 42

3.4 Case Study: Analyzing the Robustness of the U.S. Natural Gas Distribution Network ... 44
 3.4.1 The U.S. Interstate Natural Gas Distribution Network 45
 3.4.2 Identifying Bottlenecks in the Network 47
 3.4.3 Ranking the Importance and Vulnerability of the Nodes ... 51
Chapter 4 A Decentralized Pricing Mechanism for Enhancing the Robustness of Distribution Networks

4.1 Introduction ... 62
4.1.1 The Basic Idea behind Decentralized Flow Control 62
4.1.2 Flow Control for Enhancing Functional Robustness 63
4.1.3 Related Work ... 65
4.2 Problem Statements ... 66
4.2.1 Distribution Strategy and Functional Robustness 66
4.2.2 The Robustness Improvement Problem 70
4.3 A Decentralized Network Pricing Mechanism 73
4.3.1 The Pricing Mechanism 74
4.3.2 Implementation .. 76
4.3.3 Equivalence Analysis 80
4.4 Experimental Evaluation 83
4.4.1 The U.S. Natural Gas Pipeline Network 84
4.4.2 Parameter Settings ... 84
4.4.3 Results and Discussions 85
4.5 Summary .. 95

Chapter 5 A Decentralized Load-shedding Mechanism for Preventing Cascading Failures in Power Systems

5.1 Introduction .. 98
5.1.1 The Basic Idea behind Decentralized Load Shedding 98
5.1.2 Load Shedding for Preventing Cascading Failures 99
5.1.3 Related Work .. 101
5.2 Problem Statements ... 103