The Intelligent Behavior of 3D Graphical Avatars Based on Machine Learning Methods

HE Yuesheng

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Principal Supervisor: Professor TANG Yuan Yan

Hong Kong Baptist University

March 2012
Abstract

Graphical avatars have gained popularity in many application domains such as three dimensional (3D) animation movies and animated simulations for product design. However, the methods to edit avatars’ behaviors in 3D graphical environments remain to be a challenging research topic. Because the hand-crafted methods are time consuming and inefficient, automatic actions of avatars are required. To achieve autonomous behaviors of avatars, artificial intelligent can be used in this research area. In this thesis, we present a novel approach to construct a system of automatic avatars in 3D graphical environments based on the framework of actors and directors relationship. This thesis intends to simplify the designers’ work and let them make the avatars’ behaviors in 3D graphical environments by giving instructions of specific tasks. After that, the avatars will achieve the goal depending on their own intelligence. Whether the intelligent controlling or policy making system has the efficient skill to accomplish such work is essential for the framework. On the other hand, this framework has a potential of solving the problem that small numbers of 3D animation designers are facing an explosive increase of 3D graphical environments as well as avatars.

A specific framework is created for controlling the behaviors of avatars, such as classifying the difference among the environments and using a theoretical probability model to describe these actions. Because of the requirement of simulating the interactions between avatars and environments after the classification of the environments, Reinforcement Learning is used to compute the policy to control the avatars intelligently in the 3D environments for the solutions of the problems in different
situations. Our approach has solved problems such as the structure of levels for the missions and how the learning algorithm will be used to control the avatars.

Moreover, the decision making needs high speed—even online ability to control the avatars’ actions. To achieve an efficient algorithm, the spectral probability density of stochastic process is used to estimate the optimal policy of actions.

In the thesis, our method to achieve these goals will be presented. The main contributions of this paper are:

- Presenting a novel framework to define the relationship between avatars and environments;
- Presenting an efficient algorithm of reinforcement learning with spectral estimation approach for making the policy of avatars’ actions intelligently;
- Presenting a method for avatars to recognize environments.
Table of Contents

Declaration i

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Tables ix

List of Figures x

Glossary xiii

Chapter 1 Introduction 1

1.1 Applications of 3D graphical avatars 1
1.2 The avatars of simulating humans 7
1.3 The intelligent behaviors of avatars 10
1.4 Outline of the thesis ... 12

Chapter 2 Background 14

2.1 The development of avatars ... 14
2.2 Behaviors of avatars ... 19
2.3 Keyframing, motion capture and IK 22
2.4 Markov process, motion planning and reinforcement learning .. 25
2.5 3D model’s shape ... 31
Chapter 3 Framework of Human-like Behavior on Graphical Avatar 35

3.1 Hierarchial structure of the avatar’s behaviors 35
3.2 The skeleton and elementary motion 38
3.3 High level strategy ... 46
3.4 Conclusion and discussion .. 52

Chapter 4 Markov Decision Process for Controlling Work 53

4.1 Basic definitions .. 54
4.2 Markov decision process .. 58
 4.2.1 Value function .. 62
 4.2.2 Value iteration ... 63
 4.2.3 Policy iteration .. 64
 4.2.4 Introduction to monte carlo methods 65
4.3 Hidden Markov model ... 66
 4.3.1 Input-output HMM ... 68
 4.3.2 HMM on the bayesian network 69
 4.3.3 HMM with a certain probability distribution output 70
 4.3.4 HMM with semi-tied mixtures 71
 4.3.5 Hierarchical HMM (HHMM) 72
4.4 Conclusion and discussion .. 74

Chapter 5 Reinforcement Learning Method of Avatar’s Behavior 76

5.1 Temporal difference learning 77
 5.1.1 Temporal difference and TD(0) algorithm 81
 5.1.2 TD(γ) as generalization of MC and TD(0) methods 82
 5.1.3 Difference between TD and MC 83
 5.1.4 Value function approximation 84
5.2 Reinforcement learning and diffusions 85
 5.2.1 Diffusions and diffusion equations 87
5.3 Spectral estimation algorithm 91