Stress Perception and ABA Signaling in Rice Seed
Germination and Seedling Establishment

YE Nenghui

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. ZHANG Jianhua

Hong Kong Baptist University

Aug 2011
Abstract

Stress perception and ABA signaling are pivotal processes in plant signaling network that enables plants to cope with the stresses. However, little is known about the mechanism of how these processes regulate seed germination and seedling establishment, especially with the non-dormant rice seeds. In this study, we first investigated how the equilibrium between ABA biosynthesis and catabolism is related to the regulation of seed germination by glucose in rice. Pharmacological experiments by manipulating endogenous ABA content show that ABA catabolism plays a key role during seed germination. Further QRT results indicate that it is OsABA8ox3, a key gene of ABA catabolism, was significantly induced during the first 6 h of imbibition, which was consistent with the decline of ABA contents in the imbibed seeds. The expressions of OsABA8ox genes, not OsNCED genes, were sensitively suppressed in the presence of exogenously supplied glucose. These results indicate that the glucose-induced delay of seed germination is rather a result from the suppression of ABA catabolism than any enhancement of ABA biosynthesis during the rice seed germination.

The antagonism between ABA and GA plays a key role in controlling seed germination but how ABA suppresses GA accumulation during this process is not known. We investigated the possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. Both ROS and ASC were required in enhanced levels to promote the germination processes. GA biosynthesis was also suppressed by ABA, possibly through the reduced level of ASC, which acts as a substrate in the biosynthesis. Applications of exogenous ABA, ROS scavengers and ASC biosynthesis inhibitors all proved such links.
These results indicate that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis and seed germination.

Both ABA and H$_2$O$_2$ productions are induced by drought and can act as signals under stress condition. In the present study, we have demonstrated that water stress inhibited the expressions of CAT_{A} and CAT_{C} but substantially enhanced the expression of CAT_{B}. The expression changes of CAT gene families as well as the accumulation of H$_2$O$_2$ are arrested by suppressing the endogenous ABA content and show a correlation with the total activity of catalases in rice leaves under water stress. Our results suggest that water stress-induced ABA prevents the excessive accumulation of H$_2$O$_2$, through the induction of the expression of CAT_{B} gene during water stress.

MAPK cascades are key modules in signaling network, but their functions in stress perception and seed germination are seldom investigated. In rice seedlings, we found that a 45kD MAPK is activated rapidly by water stress. The responses of this MAPK to exogenous ABA and NaCl are different with that to water stress. A comparison with the accumulation rate of ABA suggests that this MAPK might play a key role in mediating the accumulation of ABA in rice leaves under water stress. While in rice seeds, a MAPK with similar molecular weight is inactivated in 3h after the onset of imbibition. Western blot experiments reveal that the germination-related MAPK could be OsMAPK1. Further investigation is needed to discover its functions in seed germination.
Table of Contents

Declaration ---i
Abstract --ii
Acknowledgement ---iv
Table of Contents ---v
List of Tables ---viii
List of Figures ---ix
List of Abbreviations ---xii

Chapter 1 General Introduction ---1
 1.1 Rice and its stress signaling -- 1
 1.2 The ABA signaling in plant -- 2
 1.2.1 ABA biosynthesis pathway --------------------------------------- 3
 1.2.2 ABA catabolism pathway -- 6
 1.2.3 ABA conjugation -- 8
 1.2.4 Physiological roles of ABA ------------------------------------- 9
 1.2.5 ABA signaling in seeds --11
 1.2.6 Antagonism between ABA and GA in seeds ----------------------- 13
 1.2.7 Interaction of ABA signaling with other signaling pathway ------ 14
 1.3 The reactive oxygen species in plants -------------------------------14
 1.3.1 The origins of ROS in plants ----------------------------------16
 1.3.2 ROS scavenging system in plants -------------------------------20
 1.3.3 The roles of ROS in plants -------------------------------------22
 1.4 The Mitogen-Activated Protein Kinase cascades in plants --------------29
 1.4.1 MAPK cascades in plant defense signaling ------------------------30
 1.4.2 MAPK pathways in plant hormone signaling -----------------------34
 1.4.3 Future works on MAPK pathway ----------------------------------35
 1.5 Objectives of this study ---38

Chapter 2 A suppression of ABA catabolism mediates the glucose-induced inhibition of seed germination -----------------------------------39
 2.1 Introduction ---39
 2.2 Materials and methods ---40
 2.2.1 Plant materials and germination -------------------------------40
 2.2.2 Measure of endogenous ABA level -------------------------------41
 2.2.3 RNA isolation and quantitative real time (qRT)-PCR --------------41
 2.3 Results ---43
 2.3.1 Seed germination is sensitive to glucose in rice ----------------43
 2.3.2 Different level of ABA content in imbibed seeds was responsible for glucose- induced delay of germination ---------------------45
 2.3.3 Changes of expression of genes related to ABA biosynthesis and
Chapter 2 Catabolism of glucose up-regulated ABA biosynthesis gene OsNCED2 expression

2.3.4 Higher concentration of glucose up-regulated ABA biosynthesis gene OsNCED2 expression

2.3.5 Glucose suppressed the expressions of ABA catabolism genes, OsABA8ox3 and OsABA8ox2.

2.3.6 Inhibition of bioactive ABA catabolism may delay the seed germination in rice

2.4 Discussion

Chapter 3 Both ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by ABA

3.1 Introduction

3.2 Materials and Methods

3.2.1 Plant materials and germination

3.2.2 Determination of ABA content

3.2.3 Malondialdehyde measurements

3.2.4 In situ localization of superoxide anion

3.2.5 Dye loading and laser scanning confocal microscopy

3.2.6 Enzyme assays

3.2.7 Ascorbic acid measurements

3.2.8 Amylase activity assay

3.3 Results

3.3.1 ABA inhibits germination in rice seed

3.3.2 ABA suppresses rather than enhances the production of ROS during imbibitions

3.3.3 A reduced ROS content is involved in the inhibition of seed germination by ABA

3.3.4 The reduced ROS content results in decreases APx activity and ASC content

3.3.5 Application of ASC releases the inhibition effect of ABA on seed germination

3.3.6 ASC is involved in the ABA-induced inhibition of seed germination by suppressing GA production

3.4 Discussion

Chapter 4 ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress

4.1 Introduction

4.2 Materials and methods

4.2.1 Plant materials and treatments

4.2.2 Measure of endogenous ABA level

4.2.3 Enzyme assays

4.2.4 H2O2 measurement

4.2.5 RNA isolation and quantitative real time (qRT)-PCR

4.3 Results

4.3.1 Water stress induced a rapid accumulation of ABA in rice leaves
4.3.2 Water stress induced an accumulation of H2O2 mediated by ABA as a key regulator in rice leaves ...90
4.3.3 Polygenetic analysis of rice catalase gene family with other relative plant species ...93
4.3.4 Water stress changes the expression pattern of rice catalase genes ----93
4.3.5 ABA inhibited the expression of CATB and CATC in rice leaf -------97
4.3.6 ABA upregulated OsCATB to contain the H2O2 content under water stress ...99
4.4 Discussion ...102

Chapter 5 MAPK cascades are involved in drought and ABA signaling pathways ..105

5.1 Introduction ...105
5.2 Materials and methods ..107
 5.2.1 Plant materials and treatments ..107
 5.2.2 RNA isolation and semi-quantitative RT-PCR107
 5.2.3 MAPK in-gel activity assay ...109
 5.2.4 Coimmunoprecipitation ..109
 5.2.5 Western-blot analysis ..110
 5.2.6 Construction of rice MAPK mutants ..110
5.3 Results ..112
 5.3.1 Tissue specific expression analysis of rice MAPK gene family112
 5.3.2 Expression changes of rice MAPK families by ABA and PEG treatments ...112
 5.3.3 A 45kD MAPK was quickly activated by water stress, which is also responses to ABA and NaCl treatment in different patterns ---------115
 5.3.4 Identification of a rice MAPK during seed germination118
 5.3.5 Construction of rice mapk mutant by agrobacterium-mediated transformation ...120
5.4 Discussion ..122

Chapter 6 General discussion and conclusion124

References ..130
Publications ...157
Curriculum Vitae ..159