Risk Assessment of Human Exposure to Persistent Organic Pollutants via Indoor Dust in Hong Kong

KANG Yuan

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Dr. CHEUNG Kwai Chung

Hong Kong Baptist University

August 2011
ABSTRACT

The major objectives of this research were to analyze concentrations of persistent organic pollutants in indoor dust in Hong Kong and identify typical pollutants contained in the dust which might lead to biological effects such as cytotoxicity, mutagenicity, genotoxicity and immunotoxicological effect.

In the present study, settled workplace dust from commercial offices, secondary schools, shopping malls, hospitals, electronic factories and manufacturing plants in Hong Kong and settled house dust from Hong Kong, Shenzhen and Guangzhou were collected. Results of chemical analyses showed that the total PBDEs in workplace dust ranged from 397 to 40,200 ng/g, with the dust samples from electronic factories having the highest levels. In general, settled dust sample from houses contained lower concentrations (ranging from 685 to 18,400 ng/g). The most abundant BDE congeners found were BDE-209 in both workplace dust and home dust, followed by BDE-99 and BDE-47. BDE-47, -99, -100 and -183 were detected in most of the hair samples collected from occupants of these homes with BDE-47 being the most dominant congener. The concentration of BDE-183 in house dust was significantly correlated with that in human hair (r=0.55, p<0.05, n=18). Risk assessment indicated that daily intake of PBDEs for children via non-dietary ingestion of dust was higher than that via food consumption.

Total PAHs concentrations of workplace dust ranged from 1170 to 25,500 ng/g, with the dust samples from manufacturing plant having the highest concentration. The total
PAHs concentrations of settled house dust from three major cities ranged from 1630 to 29,200 ng/g, which were significantly correlated with house age \((r=0.55, p<0.05)\). 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrasodium bromide (MTT) assay was performed to evaluate the cytotoxicity of organic dust extracts using human hepatocellular liver carcinoma cell line (HepG2) and human skin keratinocyte cell line (KERTr). Significant negative correlations were observed between the total PAHs concentration in workplace dust and \(LC_{50}\) of both HepG2 \((r=-0.65, p<0.01)\) and KERTr \((r=-0.63, p<0.01)\) cell lines. Source analyses demonstrated that the PAHs in indoor dust were mainly derived from pyrogenic origins.

Workplace dust samples were selected for AhR-mediated EROD assay and chemical analyses of known AhR-agonists including polychlorinated dibenzo-\(p\)-dioxins and dibenzofurans (PCDD/Fs), several PAHs and dioxin-like PCBs. All dust organic extracts showed remarkable ability of induction of 7-ethoxyresorufin O-deethylase (EROD) activity, especially those from manufacturing plant. The \(\text{TEQ}_{\text{cal}}\) of samples derived from chemical analyses (PCDD/Fs+PAHs+PCBs) were significantly correlated with the bioassay derived TEQ of 2, 3, 7, 8-TCDD (TEQ\(_{\text{bio}}\)) of total dust extracts, ranging from 4.64 to 21.6 ng/g \((r=0.98, p<0.01)\). PAHs which was also significantly correlated with TEQ\(_{\text{bio}}\) \((r=0.98, p<0.01)\), contributed 87.5-98.9% to the TEQ\(_{\text{cal}}\). The results indicated that PAHs were the dominant AhR agonists and risk stressor in the dust. When the organic dust extracts were treated with sulfuric acid, TEQ\(_{\text{cal}}\) of samples derived from chemical analyses (PCDD/Fs+PCBs) were significantly \((r=0.83, p<0.05)\) correlated with the bioassay derived TEQ of 2, 3, 7, 8-TCDD (TEQ\(_{\text{bio}}\)) of samples.
varying from 320 to 730 pg/g. Health risk assessment indicated that indoor dust was an important medium for human exposure to dioxin-like compounds.

The mutagenicity and genotoxicity of indoor dust were assessed. Results indicated that indoor dust contained both frameshift and base pair substitution mutagens. TA100 (–S9) mutagenic potency was significantly correlated with genotoxicity expressed as SOSIP (–S9) of workplace dust ($r^2 = 0.37$, $p<0.01$). Linear regression analyses indicated that the PAHs likely accounted for about 45% of the TA98 with S9 mutagenic activity of workplace dust. To achieve a more accurate cancer risk assessment, the oral bioaccessibility of B(a)A, Chry, B(b+k)F, B(a)P, D(ah)A and I(cd)P in different dust (ranging from 1.3% to 17%) was taken into account. When moderate and high estimations of dust ingestion rates were considered, about 26% and 57% of house dust samples resulted in unacceptable cancer risk ($> 1 \times 10^{-6}$) for preschool children, respectively.

Human cytokine array was used to investigate the cytokine profile of U937 and KERTr after exposure to indoor dust or dust extracts. The release of MCP-1 was increased, while release of IL-8 and IL-1β on U937 was decreased after exposure to indoor dust. The releases of RANTES, IL-8 and VEGF from KERTr after exposure to dust extract were increased. The results of IL-8 ELISA assay were consistent with the cytokine array. Real-time RT-PCR was performed to analyze relative changes in gene expression. The MCP-1 mRNA levels were increased after U937 exposure to 18 indoor dust samples, whereas, IL-8 and IL-1β mRNA level showed both up-regulation and down-regulation. The dose-dependent increase and decrease response was observed on
MCP-1 and IL-8, respectively. Most indoor dust extracts increased RANTES, IL-8 and VEGF mRNA levels on KERT\textit{r}. The dose-dependent increase response was observed both on RANTES and IL-8. A significant correlation ($r = 0.48$, $p < 0.05$) was obtained between the total PAHs concentration in dust extracts and the induction of RANTES mRNA. It can be concluded that PAHs in indoor dust are the major causative agents of the observed biological effects including cytotoxicity, mutagenicity, genotoxicity and immunotoxicological effects.
TABLE OF CONTENTS

DECLARATION..i

ABSTRACT..ii

ACKNOWLEDGEMENTS..vi

TABLE OF CONTENTS..vii

LIST OF TABLES..xiv

LIST OF FIGURES...xv

LIST OF ABBREVIATIONS...xvii

CHAPTER 1 GENERAL INTRODUCTION...1

 1.1 Research Background...1

 1.2 Description of Selected Persistent Organic Pollutants (POPs).......................2

 1.2.1 Polybrominated Diphenyl Ethers (PBDEs)...3

 1.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)...5

 1.2.3 Dioxins and Dioxin-like Polychlorinated Biphenyls.............................6

 1.3 Recent Studies on POPs Pollution in Indoor Dust..10

 1.3.1 Indoor Dust Sampling and Preparation..10

 1.3.2 POPs Pollution in Indoor Dust...11

 1.3.3 Human Exposure to POPs via Non-dietary Ingestion of Indoor Dust 12

 1.4 Recent Studies on Mutagenicity and Genotoxicity of Indoor Dust................12

 1.5 Oral Bioaccessibility Used in Risk Assessments..15

 1.6 Recent Studies on Immunotoxicological Effects of Indoor Dust...............15
CHAPTER 2 POLYBROMINATED DIPHENYL ETHERS (PBDES) IN INDOOR DUST AND HUMAN HAIR

2.1 Introduction

2.2 Materials and Methods

2.2.1 Collection of Dust and Hair Samples

2.2.2 Sample Preparation and Purification

2.2.3 GC/MS Analyses

2.2.4 Quality Control

2.2.5 Human Health Risk Assessment

2.2.6 Statistical Analyses

2.3 Results and Discussion

2.3.1 PBDEs in Workplace Dust in Hong Kong

2.3.2 Dominant PBDEs Congeners and Commercial Mixture in Workplace Dust

2.3.3 Concentration and Distribution of PBDEs in House Dust around PRD

2.3.4 Dominant PBDEs Congeners and Commercial Mixture in House Dust

2.3.5 Factors Contributing to PBDEs in Homes

2.3.6 PBDEs in Human Hair and its Relationship with House Dust Levels
2.3.7 Human Exposure of PBDEs via Indoor Dust ...45
2.4 Conclusions ...48

CHAPTER 3 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN
DIFFERENT INDOOR DUSTS AND THEIR POTENTIAL CYTOTOXICITY
BASED ON TWO HUMAN CELL LINES ...50
3.1 Introduction ..50
3.2 Materials and Methods ..52
3.2.1 Sampling and Preparation ...52
3.2.2 Chemical Analyses ..53
3.2.3 Quality Control ...54
3.2.4 Cell Culture and MTT assay ...54
3.2.5 Statistical Analyses ...55
3.3 Results and Discussion ...56
3.3.1 Distribution and Concentration of PAHs in Different Indoor Dusts ... 56
3.3.2 The Relationships between Concentrations of PAHs in Settled House
Dust and Household Attributes ..61
3.3.3 LC$\text{}_{50}$ of Dust ..63
3.3.4 LC$\text{}_{50}$ and PAHs Concentration ..68
3.3.5 PAH Source Analyses ...70
3.4 Conclusion ...71

CHAPTER 4 CHEMICAL AND BIOANALYTICAL CHARACTERIZATION OF
ARYL HYDROCARBON RECEPTOR AGONISTS IN INDOOR DUST IN HONG
Chapter 4: Mutagenicity, Genotoxicity, and Carcinogenic Risk Assessment of Indoor Dust

4.1 Introduction

4.2 Material and Methods

- **4.2.1 Sampling and Preparation**
- **4.2.2 Chemical Analyses**
- **4.2.3 Quality Control**
- **4.2.4 Cell culture and EROD Assay**
- **4.2.5 Data Analysis**
- **4.2.6 Statistical Analyses**

4.3 Results and Discussion

- **4.3.1 TEQ\textsubscript{bio} from EROD Assay**
- **4.3.2 Concentration Levels and TEQ\textsubscript{cal} from Chemical Analyses**
- **4.3.3 Relationship between TEQ\textsubscript{bio} and TEQ\textsubscript{cal} or TEQ\textsubscript{PAH}**
- **4.3.4 Health Assessment of Exposure to Dioxins via Indoor Dust**

4.4 Conclusion

Chapter 5: Mutagenicity, Genotoxicity and Carcinogenic Risk Assessment of Indoor Dust

5.1 Introduction

5.2 Materials and Methods

- **5.2.1 Sampling and Preparation**
- **5.2.2 Mutagenicity and Genotoxicity Test**
- **5.2.3 Oral Bioaccessibility of PAHs in Indoor Dust**
5.2.4 Quality Control ... 104

5.2.5 Cancer Risk Assessment of PAHs in Indoor Dust 104

5.2.6 Statistical Analyses .. 106

5.3 Results and Discussion .. 106

5.3.1 Mutagenicity and Genotoxicity of Indoor Dust 106

5.3.2 Relationship between Dust Mutagenicity and PAHs or Household Attributes .. 113

5.3.3 Cancer Risk Assessment of Indoor Dust 116

5.4 Conclusion .. 120

CHAPTER 6 THE USE OF CYTOKINE ARRAY TO EXAMINE CYTOKINE PROFILES OF TWO HUMAN CELL LINES EXPOSED TO INDOOR DUST 121

6.1 Introduction ... 121

6.2 Materials and Methods .. 123

6.2.1 Sample Collection .. 123

6.2.2 Characterization of Dust Samples .. 123

6.2.3 Cell Culture and Cytokine Array Assay 124

6.2.4 Interleukin-8 (IL-8) ELISA Assay .. 127

6.2.5 Real-time RT-PCR Analyses ... 127

6.2.6 Statistical Analyses .. 130

6.3 Results and Discussion .. 130

6.3.1 Characterization of Indoor Dust ... 130

6.3.2 Cytokines Release on U937 and KERTr after Exposure to Indoor Dust
6.3.3 Comparison of ELISA with Cytokine Array

6.3.4 Changes in Cytokine mRNA Levels in U937 after Stimulation by Dust

6.3.5 Changes in Cytokine mRNA Levels in KERTr after Stimulation by Dust Extract

6.3.6 Characterization of Causative Agents on the Biological Effects

6.4 Conclusions

CHAPTER 7 GENERAL DISCUSSION AND CONCLUSIONS

7.1 Introduction

7.2 PBDEs and PAHs in Indoor Dust

7.3 Combination of Chemical Analyses and Bioassays to Assess Dioxins in Indoor Dust

7.4 Human Health Risk Assessment

7.4.1 Comparison of Daily Intake of PBDEs via Indoor Dust with that via Food

7.4.2 Comparison of Daily Intake of PCDD/Fs and Dioxin-like PCBs via Indoor Dust with that via Food and Air

7.4.3 Cancer Risk Assessment of PAHs via Indoor Dust

7.5 Biological Effects of Indoor Dust

7.5.1 Cytotoxicity

7.5.2 Mutagenicity and Genotoxicity