Homology Modeling of Aryl Hydrocarbon Receptor and its Ligand-Binding Properties Investigated by Molecular Dynamics Simulation

MEI Han

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Philosophy

Principal Supervisor: Dr. CHENG, Yuen-Kit
Hong Kong Baptist University
July 2011
Abstract

The aryl hydrocarbon receptor (AHR) is a ligand-dependent, basic helix-loop-helix Per-Arnt-Sim (PAS) containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since the crystal structure of the AHR has not yet been determined, little is known about the ligand-binding mechanisms at the molecular level. Thus homology modeling followed by molecular dynamics study is helpful in understanding the ligand-binding process and relevant protein local dynamics. In this thesis, several computational methods including homology modeling, ligand-docking, molecular dynamics simulation, steered molecular dynamics simulation (SMD) and free-energy umbrella sampling are employed to investigate two important biological properties of AHR proteins. One of the properties is the biological activity difference on mouse AHR (mAHR) among various ligands. The results reveal that the hydrogen bond formed between His331 and His285, which might be critical in controlling the opening of ligand-unbinding path, is stronger in the TCDD-bound mAHR complex than those of the other ligand-bound complexes. The “unbinding” path predicted by SMD and umbrella sampling for TCDD is also different from those of the other ligands. Additionally, we predicted that the ligand-binding process is induced by the synergistic interaction among a loop connecting Aβ and Bβ, a loop connecting Hβ and Iβ and the ligand. The other biological property of AHR is that TCDD shows significant biological activity difference between mouse and human. The MD simulation results suggest that a mutation from Alanine-375 to Valine-381 partially contributes to this species difference. The possibility of a compound indigo as endogenous AHR ligand has also been interrogated by computational methods.
Table of Contents

Declaration ... i
Abstract ... ii
Acknowledgements .. iii
Table of Contents .. iv
List of Tables ... viii
List of Figures ... ix
List of Abbreviations ... xvi
List of Symbols .. xvii
Chapter 1 Introduction ... 1
 1.1 AHR signal transduction .. 1
 1.2 Structure of AHR ... 3
 1.3 AHR ligands .. 4
 1.4 Species difference in AHR ... 5
 1.5 Available homology models of AHR ... 6
 1.6 Overall Objective .. 8
 1.7 Organization of the thesis ... 8
 1.8 References ... 10
Chapter 2 Homology Modeling and Docking Study ... 15
 2.1 Introduction ... 16
 2.2 Methodology ... 17
 2.2.1 Homology modeling .. 17
 2.2.2 Molecular docking .. 18
 2.3 Results and Discussions .. 18
 2.3.1 Homology model of the mAHR LBD (ARNT-free) 18
 2.3.2 Homology model of the hAHR LBD ... 23
 2.3.3 Homology model of the mAHR/ARNT complex 25
 2.3.4 Binding pockets of the homology models 28
 2.4 Chapter Conclusion .. 29
Chapter 3: Optimization of the Setting in the Constrained Molecular Dynamics Study of Ligand-bound mAHR

3.1 Introduction
3.2 Methodology
3.3 Results and Discussions
 3.3.1 Optimization of the force constants exerted on mAHR
 3.3.2 Varying the length of the residues constrained
 3.3.3 Comparison of the simulation results of TCDD-bound mAHR/ARNT complex with and without force constraints
3.4 Discussion
3.5 Chapter Conclusion
3.6 References

Chapter 4: Molecular Dynamics Study of mAHR Bound with Ligands

4.1 Introduction
4.2 Methodology
 4.2.1 Docking study
 4.2.2 System set-up
 4.2.3 Molecular dynamics (MD) simulations
 4.2.4 MM/PBSA calculation
4.3 Results
 4.3.1 MD simulation of TCDD-bound mAHR
 4.3.2 MD simulation of 3MC-bound mAHR
 4.3.3 MD simulation of β-NF-bound mAHR
 4.3.4 MD simulation of dibenzo-dioxin (DD) bound mAHR
 4.3.5 MD simulation of apo-mAHR
4.4 Discussions
 4.4.1 Two possible entering paths for ligands
 4.4.2 A hydrogen bond formed between two histidines – A possible
lock of path1 ... 97
4.4.3 Two loop-regions.. 101
4.4.4 Electrostatic interaction with Gln377.................................. 108
4.4.5 Horizontal plane vs vertical plane...................................... 108
4.4.6 Planarity of ligands... 109
4.4.7 Size of the ligands... 110
4.4.8 The importance of chlorine atoms of TCDD on ligand-binding...... 111
4.4.9 Comparison between TCDD-bound mAHR and THS-044-bound Hif-2α. 114
4.5 Chapter Conclusion... 117
4.6 References.. 118

Chapter 5: Binding of Indigo with mAHR... 122
5.1 Introduction... 123
5.2 Methodology.. 125
 5.2.1 Docking study... 125
 5.2.2 System set-up... 125
 5.2.3 Molecular Dynamics (MD) simulations............................ 125
 5.2.4 MM/PBSA calculation... 125
5.3 Results and Discussions... 125
5.4 Chapter Conclusion... 132
5.5 References.. 135

Chapter 6: Steered Molecular Dynamics and Free-energy Umbrella Sampling
Study of Ligand-unbinding in mAHR.. 137
6.1 Introduction... 138
6.2 Methodology.. 139
 6.2.1 Steered molecular dynamics (SMD)................................ 139
 6.2.2 Umbrella sampling study.. 141
6.3 Results and Discussions... 142
 6.3.1 SMD studies of TCDD-unbinding and 3MC-unbining........... 142
 6.3.2 Umbrella sampling results of TCDD-unbinding............... 152
Chapter 7: MD simulation of TCDD-bound Human AHR (hAHR) and SMD study

7.1 Introduction ... 160
7.2 Methodology ... 163
 7.2.1 MD simulation ... 163
 7.2.2 SMD simulation ... 163
7.3 Results and Discussions .. 161
 7.3.1 MD simulation results ... 163
 7.3.2 SMD simulation results ... 171
7.4 Chapter Conclusion ... 175
7.5 References .. 176

Chapter 8: Overall Conclusion and Prospectus 178

8.1 Overall Conclusion ... 178
8.2 Prospectus .. 179

Curriculum Vitae ... 181