Microemulsions Enhanced Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) Contaminated Soil Using Composting Technology

WONG Siu Yi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Philosophy

Principal Supervisor: Prof. Jonathan W. C. WONG

Hong Kong Baptist University

July 2011
Abstract

Soil contamination with polycyclic aromatic hydrocarbons (PAHs), originated from increasing consumptions of coal and petroleum necessitates to the development of innovative technologies to remove PAHs from soil. Thermophilic bioremediation is regarded as one of the most popular strategies to remediate soil contaminated by PAHs. However, the success of bioremediation has been limited by the low aqueous solubility and poor bioavailability of these hydrophobic organic compounds. Microemulsions which have been successfully employed in soil washing to increase the solubility and desorption of hydrophobic pollutants, were evaluated for their feasibility to improve the biodegradation of PAHs compounds in soil using composting approach.

The first phase of the present study aimed at developing microemulsion formulation under thermophilic temperature (55°C) and assessing their effect on solubilizing two representative PAHs, phenanthrene (PHE) and benzo[a]pyrene (B[a]P). Tween 80, linseed oil, with the presence of 1-pentanol to serve as a cosurfactant could form oil-in-water microemulsions under thermophilic condition. Solubilization results showed that the behaviours of microemulsions were similar to surfactants, which showed the equilibrium solubility of PAH compounds increased linearly with increasing concentration of surfactant above critical micelle concentration. In addition, the oil concentration was another important factor in enhancing of solubilization of PAHs. With 250 mg L⁻¹ linseed oil, there was no difference between the weight solubilization ratio (WSR) values in microemulsions and Tween 80 alone systems; however, when the oil concentration increased to 500 mg L⁻¹ in microemulsions, the maximum WSR values for PHE and B[a]P were 0.0751 and 0.0133 which were about 1.6 to 2 fold higher than that of their Tween 80 counterparts. Furthermore, the microemulsions containing 1000 mg L⁻¹ linseed oil did not further increase the solubilization. Due to the structure of microemulsions, the WSR values reached a maximum and were constant even the extra amount of oil was added into the system.

The feasibility of using oil-in-water microemulsions to enhance the bioremediation of PHE and B[a]P in aqueous system was evaluated in the second phase. No additional benefit was observed on the biodegradation of PHE by adding microemulsions consisting 0.2% and 0.4% Tween 80 to aqueous system, which is likely due to the high aqueous solubility of PHE making it readily accessible for microbial degradation. The stimulatory effect of surface active agents on aqueous biodegradation was more pronounced with the higher molecular weight B[a]P. Additionally, the results clearly indicated that the removal rate of B[a]P in microemulsions was higher than that in their respective Tween 80 solution alone systems. And it is also worth to note that the removal rate of B[a]P increased with increasing oil content and shown a significant difference in both 0.2% and 0.4% Tween 80 microemulsion systems. However, a distinct inhibitory effect on PHE and B[a]P degradation was observed in the presence of 0.4% Tween 80 solution, which reduced the removal rate to half as that of control group, only 34.4% and 18.6% removal of PHE and B[a]P, respectively. This might be due to surfactants which might reduce the cell surface hydrophobicity of Bacillus subtilis (BUM) and as a result, might inhibit the uptake of hydrophobic pollutants. Microemulsions increased the solubilization of PAHs and might simultaneously suppress the negative effects of Tween 80. Therefore, microemulsions could successfully enhance the solubilization of PAHs and subsequently benefit to the biodegradation.
In the third phase of this study, a series of batch desorption experiments using both microemulsions and Tween 80 solutions was carried out to evaluate their effect on PAHs availability in soil-water system. Various concentrations of surfactant/cosurfactant and oil were used to evaluate their individual influences on the desorption of PHE and B[a]P. Microemulsions did not show an advantage over Tween 80 solutions on the desorption efficacies for PHE. However, a distinct inhibitory effect on B[a]P desorption was observed in the presence of microemulsions. At high concentrations of linseed oil (500 mg L$^{-1}$), the desorption rate of B[a]P declined to zero. It might reveal that the high amount of oil in microemulsions sorbed onto soil and provided potential sorptive sites for PAHs especially for high octanol-water partition coefficient (K_{ow}) compounds which have high affinity to oil. These results clearly showed that the influences of microemulsions in desorption were completely different from that of solubilization for both PHE and B[a]P. The presence of soil affected the distribution behaviours of both PHE and B[a]P. Therefore, sorption of the individual component in microemulsions should be further investigated to provide more information on the feasibility of using microemulsions as soil washing agents.

The aim of the fourth phase was to develop an innovative bioremediation technique for PAHs contaminated soil by enhancing composting remediation efficiency through addition of microemulsions. In order to gain a better insight into this PAHs remediation strategy, fates and availabilities of PAHs in soil were also investigated. The results demonstrated that pig manure amendment facilitated the removal of both PHE and B[a]P in batch composting study for a period over 56 days. In the soil control without any amendments, the removal rates of PHE and B[a]P were 49.3% and 29.7%, respectively. With the addition of pig manure, PHE could be completely removed within 35 days, whereas 41.5% of B[a]P was removed in 56 days. The combined application of pig manure and surface active agents led to a more extensive removal rate, as 72.0% and 55.5% of B[a]P could be removed in the presence of microemulsion and Tween 80, respectively. However, the addition of microemulsion and Tween 80 did not cause any additional advantage on the biodegradation of PHE because of its comparative higher aqueous solubility. Moreover, a sequential extraction mass balance study on the species of PAHs demonstrated that biodegradation was the predominant means for both PHE and B[a]P removal in soil composting treatment whereas sequestration of PHE and B[a]P to organic matter was insignificant. In the presence of pig manure, the PHE in non-desorbing and bound residual fractions could be released as desorbing fraction for microbial attack. The present results concluded that microemulsion could enhance the biodegradation of PAHs, especially B[a]P in composting process and sorption to the organic fraction played a very minor role. Overall, this work will contribute to significant benefits for risk assessment, and development of remediation strategies for contaminated sites.

It can be concluded that the oil-in-water microemulsions formed by Tween 80, linseed oil and 1-pentanol is a promising alternative to Tween 80 alone system in enhancing the bioremediation of soil contaminated by PAHs under composting condition.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Declaration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1. Aims and Objectives

1.1. Introduction 1

1.2. Research Objectives and Outlines of the Present Study 3

Chapter 2. Literature Review

2.1. An Overview of PAHs 7

2.1.1. Sources of PAHs 7

2.1.2. Physical and Chemical Characteristics of PAHs 8

2.1.3. Fates of PAHs in the Environment 10

2.1.4. Health and Environmental Impacts of PAHs 11

2.2. Approaches for Remediation of PAHs Contaminated Soil 12

2.2.1. Physical-Chemical Technologies 12

2.2.2. Phytoremediation 13

2.2.3. Bioremediation 14

2.2.3.1. Microbial Metabolism of PAHs 16

2.2.3.2. Factors Affecting the Bioremediation of PAHs 21

2.3. Relation between Mass Transfer Rate and Bioremediation Rate 26

2.3.1. Surfactants 27

2.3.2. Microemulsions 30

2.3.2.1. An Overview of Microemulsions 30

2.3.2.2. Applications of Microemulsions in Soil Remediation 34
2.4. Bioavailability Assessments and Environmental Fates of PAHs in Soil
2.4.1. Desorbing Fraction 37
2.4.2. Non-desorbing Fraction 39
2.4.3. Bound Residual Fraction 41

2.5. Bioremediation Technology: Composting 42

Chapter 3. Formulation of Microemulsions and Solubilization Enhancement of PAHs

3.1. Introduction 47

3.2. Materials and Methods 49
3.2.1. Materials 49
3.2.2. Construction of Pseudoternary Phase Diagrams 49
3.2.3. Solubilization Tests 50
3.2.4. HPLC Analysis of PAHs 51

3.3. Results and Discussion 51
3.3.1. Formulation of Microemulsions 51
3.3.1.1. Effect of Surfactant/Cosurfactant Ratios on Formation of Microemulsions 51
3.3.1.2. Effect of Surfactant Types on Formation of Microemulsions 52
3.3.1.3. Effect of Temperatures on Formation of Microemulsions 56
3.3.2. Solubilization of PAHs in the Presence of Microemulsions 59

Chapter 4. Microemulsions Enhanced Biodegradation of PAHs in Aqueous System

4.1. Introduction 67

4.2. Materials and Methods 69
4.2.1. Materials 69
4.2.2. Microbial Inoculation 69
4.2.3. Preparation of Microemulsions 69
4.2.4. Biodegradation of PHE and B[a]P 70
4.2.5. Statistical Analysis 71

4.3. Results and Discussion 71
4.3.1. Degradation of PHE in the Presence of Microemulsions 71
4.3.2. Co-metabolic Degradation of PHE and B[a]P in Aqueous System in the Presence of Microemulsions and Surfactant Solutions 75

4.4. Conclusions 81
Chapter 5. The Effect of Microemulsions on the Distribution and Transfer of PAHs in Soil-Water System

5.1. Introduction

5.2. Materials and Methods
- 5.2.1. Preparation of PAHs Spiked Soil
- 5.2.2. Preparation of Microemulsions
- 5.2.3. Batch Desorption Study

5.3. Results and Discussion
- 5.3.1. Desorption Efficacies of PAHs in Soil-Water System
- 5.3.2. Effect of Microemulsions on the Partition Isotherm of PAHs in Soil-Water System

5.4. Conclusions

Chapter 6. Microemulsions Enhanced Bioremediation of PAHs Contaminated Soil Using Composting Technology

6.1. Introduction

6.2. Materials and Methods
- 6.2.1. Materials
- 6.2.2. Microbial Inoculation
- 6.2.3. Microemulsion
- 6.2.4. Preparation of PAHs Contaminated Soil
- 6.2.5. Composting of PAHs Contaminated Soil
- 6.2.6. Fractionation of PAHs in the Composting Materials
- 6.2.7. Enumeration of PAHs Degrading Bacterial Population
- 6.2.8. Determination of Dissolved Organic Matter
- 6.2.9. Chemical and Statistical Analysis

6.3. Results and Discussion
- 6.3.1. Growth of PAHs Degrading Bacteria
- 6.3.2. Remaining Concentration of PAHs in Soil Fractions
- 6.3.3. Fates and Availabilities of PAHs in the Three Soil Fractions
- 6.3.4. Correlations between Desorbing Fraction and Non-desorbing Fraction
- 6.3.5. Changes in Dissolved Organic Carbon and Total Organic Carbon in Soil

6.4. Conclusions

Chapter 7. General Discussion, Conclusions and Recommendations for Future Research
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>Effects of Microemulsions on the Solubilization and Desorption of PAHs</td>
<td>136</td>
</tr>
<tr>
<td>7.3</td>
<td>Effects of Microemulsions on the Biodegradation of PAHs</td>
<td>138</td>
</tr>
<tr>
<td>7.4</td>
<td>Application of Microemulsions in Remediation of PAHs Contaminated Soil Using Composting Technology</td>
<td>139</td>
</tr>
<tr>
<td>7.5</td>
<td>Recommendations for Future Work</td>
<td>140</td>
</tr>
</tbody>
</table>

References
142

Appendices
165

Curriculum Vitae
167