Neuroprotective Roles of Ceftriaxone on Cultured Astrocytes and Neuronal cells

LI Ka Wai

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Prof. K.K.L. Yung

Hong Kong Baptist University

July 2011
Abstract

Glutamate is the neurotransmitter in the nervous system which can lead to neuronal damage and cell death when excess levels of glutamate accumulated. GLT-1 is a glial glutamate transporter that is found in glial cells. GLT-1 can rapidly remove glutamate from the extracellular space and can prevent glutamate toxicity. Beta-lactam antibiotics including ceftriaxone are potent stimulators of GLT1 expression. In order to investigate the efficacy of ceftriaxone in inducing the expression of GLT-1 in astrocytes, ceftriaxone was applied on primary cell culture of astrocytes. Different concentrations of the ceftriaxone (10, 100 µM & 1 mM) were employed for 1 to 7 days. Expression of GLT-1 levels was quantified by immunofluorescence and Western blot experiments. The present results indicated that the levels of GLT-1 expression in the astrocytes were not changed with the increased concentrations of ceftriaxone by both Immunocytochemistry and Western Blotting. Ceftriaxone cannot stimulate the up-regulation of GLT-1 in cultured rat astrocytes.

Glutamate cytotoxicity assay was tested in astrocytes, SH-SY5Y cells and co-culture of astrocytes and SH-SY5Y cells to study the glutamate excitotoxicity effect. All the cells tested were sensitive to glutamate excitotoxicity. The cytotoxicity of SH-SY5Y cells in co-culture was reduced to the level similar to astrocytes culture. Astrocytes provide neuroprotection against glutamate toxicity to neurons in the co-culture system. The neuroprotective effect of ceftriaxone in pre-treated astrocytes against glutamate excitotoxicity was investigated. 100µM and 1mM of ceftriaxone showed a significant reduction of cytotoxicity in cultured astrocytes from 1 to 7 days of treatment. The neuroprotective effect of ceftriaxone in pre-treated astrocytes to SH-SY5Y cells against glutamate excitotoxicity was examined by co-culture. 100µM and 1mM of ceftriaxone also showed a significant reduction of cytotoxicity in co-culture. The cytotoxicity of co-culture after glutamate challenge has a larger reduction than astrocytes culture. Astrocytes showed a greater ability to protect SH-SY5Y cells against glutamate toxicity. Therefore, ceftriaxone is an effective drug against neuronal diseases.

NF-κB is a possible mechanism for ceftriaxone to stimulate the GLT-1 expression. Ceftriaxone activates the GLT-1 expression at transcriptional level. By Western Blotting, p-NF-κB p65 (Ser536) and NF-κB p65 were not significant altered in cytoplasmic portion and absent in nuclear portion after ceftriaxone treatment. No significant change in p-IκBα (Ser32) and IκBα were found. These results revealed no activation of NF-κB signaling pathway to induce GLT-1 transcription. Therefore, the
inactivation of NF-κB signaling pathway revealed no change in GLT-1 expression after ceftriaxone stimulation. Akt play a critical role in controlling cell survival and apoptosis. Increase in \(p\)-Akt (Thr308) after 1mM of ceftriaxone treatment was found. This results revealed ceftriaxone provide neuroprotection by activating Akt signaling pathway. However, there is no significant change in \(p\)-Akt (Ser473), \(p\)-PDK1 (Ser241), \(p\)-PTEN (Ser380) and PI3K p110γ. Other phosphorylation site of PDK1, PTEN and PI3K subunits should be performed to investigate the upstream target of Akt from ceftriaxone.
Table of Contents

Declaration i
Abstract ii
Acknowledgement iv
Table of Contents v
List of Figures xi
List of Abbreviation xiii

Chapter 1 Literature Review

1. Literature and glutamate receptors 1
 1.1 Glutamate as a neurotransmitter 1
 1.2 Ionotropic glutamate receptors 2
 1.3 Metabotropic glutamate receptors 3
2. Glutamate transporter 4
 2.1 Subtype of glutamate transporter 4
 2.2 Glutamate transporter-1 (GLT-1) 6
3. Glutamate receptors and excitotoxicity 8
 3.1 N-methyl-D-aspartate (NMDA) receptors 8
 3.2 Glutamate excitotoxicity 8
4. Astrocytes 11
5. SH-SY5Y neuroblastoma cells 13
6. Role of Beta-lactam antibiotics in neuroprotection 14
7. Signaling pathway 16
 7.1 Nuclear factor kappa-B (NF-κB) pathway 16
 7.2 Akt pathway 17
8. Objectives of the thesis 21

Chapter 2 Materials and methods

1. Primary cell culture of astrocytes 22
2. Pharmacological treatments in cell culture 23
3. SH-SY5Y cell culture 24
4. Co-culture of astrocytes and SH-SY5Y cells 24
5. Immunocytochemistry and semi-quantitative analysis of intensity 25
 5.1 Single immunofluorescence 25
 5.2 Double immunofluorescence 25
Chapter 3 Effects of ceftriaxone on GLT-1 expression and cell protection against glutamate excitotoxicity in cultured rat astrocytes

3.1 Introduction

3.2 Objectives

3.3 Materials and methods
 3.3.1 Pharmacological treatments on astrocytes culture
 3.3.2 Immunocytochemistry
 3.3.3 Western blot analysis
 3.3.4 Glutamate toxicity assay
 3.3.5 Neuroprotective effect of ceftriaxone on astrocytes
 3.3.6 Neuroprotective effect of ceftriaxone in co-culture of astrocytes and SH-SY5Y cells

3.4 Results
 3.4.1 Double labeling of GFAP and GLT-1 in astrocytes
 3.4.2 Single labeling of GLT-1 in astrocytes after pharmacological treatments in time course
 3.4.2.1 Single labeling of GLT-1 in astrocytes after 1 day of treatment
 3.4.2.2 Single labeling of GLT-1 in astrocytes after 2 days of treatment
 3.4.2.3 Single labeling of GLT-1 in astrocytes after 3 days of treatment
 3.4.2.4 Single labeling of GLT-1 in astrocytes after 4 days of treatment
 3.4.2.5 Single labeling of GLT-1 in astrocytes after 5 days of...
3.4.2.6 Single labeling of GLT-1 in astrocytes after 6 days of treatment

3.4.2.7 Single labeling of GLT-1 in astrocytes after 7 days of treatment

3.4.3 Western blotting analysis of GLT-1 in astrocytes after pharmacological treatments in time course

3.4.3.1 Western blotting analysis of GLT-1 in astrocytes after 1 day of treatment

3.4.3.2 Western blotting analysis of GLT-1 in astrocytes after 2 days of treatment

3.4.3.3 Western blotting analysis of GLT-1 in astrocytes after 3 days of treatment

3.4.3.4 Western blotting analysis of GLT-1 in astrocytes after 4 days of treatment

3.4.3.5 Western blotting analysis of GLT-1 in astrocytes after 5 days of treatment

3.4.3.6 Western blotting analysis of GLT-1 in astrocytes after 6 days of treatment

3.4.3.7 Western blotting analysis of GLT-1 in astrocytes after 7 days of treatment

3.4.4 Glutamate toxicity assay on astrocytes culture

3.4.5 Glutamate toxicity assay on SH-SY5Y culture

3.4.6 Glutamate toxicity assay in co-culture of astrocytes and SH-SY5Y cells

3.4.7 Comparison of glutamate toxicity assay on astrocytes, SH-SY5Y cells and co-culture

3.4.8 Neuroprotective effect of ceftriaxone on astrocytes

3.4.8.1 Neuroprotective effect of ceftriaxone on astrocytes after 1 day of treatment

3.4.8.2 Neuroprotective effect of ceftriaxone on astrocytes after 2 days of treatment

3.4.8.3 Neuroprotective effect of ceftriaxone on astrocytes after 3 days of treatment

3.4.8.4 Neuroprotective effect of ceftriaxone on astrocytes after 4 days of treatment

3.4.8.5 Neuroprotective effect of ceftriaxone on astrocytes after 5 days of treatment
3.4.8.6 Neuroprotective effect of ceftriaxone on astrocytes after 6 days of treatment
3.4.8.7 Neuroprotective effect of ceftriaxone on astrocytes after 7 days of treatment
3.4.9 Neuroprotective effect of ceftriaxone in co-culture of astrocytes and SH-SY5Y cells
3.4.9.1 Neuroprotective effect of ceftriaxone in co-culture after 1 day of treatment
3.4.9.2 Neuroprotective effect of ceftriaxone in co-culture after 2 days of treatment
3.4.9.3 Neuroprotective effect of ceftriaxone in co-culture after 3 days of treatment
3.4.9.4 Neuroprotective effect of ceftriaxone in co-culture after 4 days of treatment
3.4.9.5 Neuroprotective effect of ceftriaxone in co-culture after 5 days of treatment
3.4.9.6 Neuroprotective effect of ceftriaxone in co-culture after 6 days of treatment
3.4.9.7 Neuroprotective effect of ceftriaxone in co-culture after 7 days of treatment

3.5. Discussion
3.5.1 Expression of astrocyte markers GFAP and GLT-1
3.5.2 GLT1 expression on astrocytes after CEF treatment by immunofluorescence and Western blot analysis
3.5.3 Neuroprotective effect of ceftriaxone on astrocytes against excitotoxicity of glutamate
3.5.4 Cytotoxic effect of glutamate on SH-SY5Y cells in culture
3.5.5 Ceftriaxone administration on primary astrocytes enhances neuroprotection in glia-neuronal co-cultures

3.6 Conclusion

Chapter 4 Roles of NF-κB and Akt signaling pathways in the neuroprotection by ceftriaxone
4.1 Introduction
4.2 Objectives
4.3 Materials and methods
4.3.1 Pharmacological treatments in astrocyte culture
4.3.2 Protein preparation and antibodies for Western blot analysis

4.4 Results

4.4.1 Western blot analysis on mechanism of ceftriaxone in neuroprotection

4.4.1.1 Protein expression of GLT-1

4.4.1.2 Protein expression of p-NF-κB p65 (Ser536)

4.4.1.3 Protein expression of p-IκBα (Ser32)

4.4.1.4 Protein expression of p-Akt

4.4.1.5 Protein expression of p-Akt in astrocytes after pharmacological treatments in time course

4.4.1.5.1 Protein expression of p-Akt in astrocytes after 1 day of ceftriaxone treatment

4.4.1.5.2 Protein expression of p-Akt in astrocytes after 2 days of ceftriaxone treatment

4.4.1.5.3 Protein expression of p-Akt in astrocytes after 3 days of ceftriaxone treatment

4.4.1.5.4 Protein expression of p-Akt in astrocytes after 4 days of ceftriaxone treatment

4.4.1.5.5 Protein expression of p-Akt in astrocytes after 5 days of ceftriaxone treatment

4.4.1.5.6 Protein expression of p-Akt in astrocytes after 6 days of ceftriaxone treatment

4.4.1.5.7 Protein expression of p-Akt in astrocytes after 7 days of ceftriaxone treatment

4.4.1.6 Protein expression of p-PDK1 (Ser241)

4.4.1.7 Protein expression of p-PTEN (Ser380)

4.4.1.8 Protein expression of PI3K p110γ

4.5 Discussion

4.5.1 Protein expression of GLT-1

4.5.2 Protein expression of p-NF-κB p65 (Ser536)

4.5.3 Protein expression of p-IκBα (Ser32)

4.5.4 Protein expression of p-Akt

4.5.5 Protein expression of p-Akt in astrocytes after pharmacological treatments is not time-dependent

4.5.6 Protein expression of p-PDK1 (Ser241)

4.5.7 Protein expression of p-PTEN (Ser380)

4.5.8 Protein expression of PI3K p110γ
4.6 Conclusion 134

Chapter 5 Summary and Conclusion 135

List of References 141
Appendix I 154
Appendix II 156
Appendix III 157
Curriculum Vitae 161