Persistent Organic Pollutants in Aquaculture Systems in the Pearl River Delta, with Focus on Their Bioaccessibility via Fish Consumption

WANG Hongsheng

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Principal Supervisor: Prof. Ming-Hung WONG

Hong Kong Baptist University

July 2011
This study aimed to characterize the distribution of PAHs and OCPs in fish muscle and sediments collected from freshwater fishponds and mariculture zones in the Pearl River Delta (PRD); evaluate the enrichment of PAHs and OCPs in mariculture sediments; study the dietary intake and human health risks of PBDEs and their structural analogues (MeO-BDEs, OH-BDEs and BRPs) via fish consumption; and investigate the bioaccessibilities of PAHs and OCPs via fish consumption.

The concentrations of PAH, HCHs and DDTs in surface sediments collected from the freshwater fishponds and mariculture zones in the PRD ranged from 52.7 to 717 ng g⁻¹, from N.D. to 44.4 ng g⁻¹, and from N.D. to 20.4 ng g⁻¹, dw, respectively. Generally, the PAH and OCP contamination levels in the aquaculture sediments of the PRD were moderately high when compared with other parts of China and worldwide. Our results revealed that the source of PAHs was mainly derived from mixed combustion (66.2%) in freshwater fishpond sediments. As for mariculture sediments, vehicle emissions and coal combustion were the main sources (52.5% and 47.5% of ∑PAH, respectively) of PAHs.

In fish muscle collected from the aquaculture systems, the concentrations of PAHs, HCHs and DDTs ranged from 10.2 to 24.1 ng g⁻¹, from 0.15 to 4.38 ng g⁻¹, and from 0.78 to 12.3 ng g⁻¹, ww, respectively. The percentages exceeding the screening values (SV) of PAHs, HCHs and DDTs were 61.2%, 1.65% and 4.1% in freshwater fish, and 83.6%, 64.9% and 17.6% in marine fish, respectively. A more conservative maximum consumption rate (69 g day⁻¹, the average of CRmax of all fish species) was recommended in order to reduce the cancer risks caused by PAHs, HCHs and DDTs via fish consumption.

In comparison with the sediments from the corresponding reference sites, the average enrichment percentages for TOC, PAHs, HCHs and DDTs were 21.4%, 43.8%, 34.7% and 676% in surface aquaculture sediments, and 24.6%, 73.7%, 21.9% and 1296% in core aquaculture sediments, respectively. The enrichment percentage could be even as high as 8663% for o, p' ‐DDD. Significant positive correlations between the proportions of individual PAHs, HCHs and DDTs (excluding p, p ‐DDD) in trash fish with that in surface mariculture sediments
suggested that fish feeds were the main sources of the enriched POPs in mariculture sediments. Another important source for the enriched DDTs, especially p, p'-DDD, was in the form of dechlorinated DDTs released from antifouling paints under anaerobic conditions. Results of ecological risk assessments revealed that enriched OCPs had high potential to contaminate surrounding marine environment leading to adverse effects on the associated biota.

Twenty-two PBDEs, 7 MeO-BDEs, 15 OH-BDEs and 3 bromophenols (BRPs) were analyzed in twenty fish species (279 samples). The estimated daily intakes of PBDEs, MeO-BDEs, OH-BDEs and BRPs via fish consumption ranged from 4.4 to 14, 0.50 to 4.3, 0.02 to 0.43 and 0 to 0.21 ng/kg-day for Hong Kong residents, respectively, based on 50th and 95th centile concentrations. BDE-47 and 99 were found to be the major PBDE congeners while 2'-MeO-BDE-68, 6-MeO-BDE-47 and 3-MeO-BDE-47 were the dominant MeO-BDEs. Concentrations of OH-BDE and BRP were 10 to 100-fold less than those of PBDEs, with small frequencies of detection (max 36.7%). Dietary intake of PBDEs via fish consumption by Hong Kong residents was greater than many developed countries, such as the USA, UK, Japan and Spain. The results indicated that the potential toxicity of these compounds should not be neglected.

An in vitro gastrointestinal digestion model was performed to evaluate the bioaccessibility of PAHs, HCHs and DDTs in twenty fish species collected from Hong Kong markets. Based on the model, the average bioaccessibilities were 24.3, 31.1% in gastric and intestinal conditions for ΣPAHs, 3.35, 8.73% for ΣHCHs and 5.48, and 17.6% for ΣDDTs, respectively. Significant (p<0.05) correlations were observed between OCP congener digestible concentrations in fish muscle and their corresponding concentrations in human tissues of Hong Kong residents. The results suggested that food (such as fish) intake was the predominant pathway for the body loadings of PAHs and OCPs. It was concluded that human health risk assessment based on solvent concentrations should be modified by taking bioaccessibility of the contaminant into account because only a limited proportion of OCP was bioaccessible.

The present study revealed that the fish and sediments collected from the freshwater fishponds and mariculture zones of the PRD were moderately contaminated by PAHs and OCPs. Reducing POPs contamination of fish feeds is recommended because fish feeds contribute significantly to the contamination of PAHs and OCPs in fish muscle as well as their enrichment in
mariculture sediments. Furthermore, new emerging chemicals such as MeO-PBDEs and OH-PBDEs in fish samples should not be neglected for their potential toxicity. The results also suggested that risk assessment based on solvent concentrations might over estimate the human health risks.
TABLE OF CONTENTS

DECLARATION..i

ABSTRACT...ii

ACKNOWLEDGEMENTS...v

TABLE OF CONTENTS...vi

LIST OF TABLES..xii

LIST OF FIGURES..xiv

LIST OF ABBREVIATIONS...xvii

CHAPTER 1. GENERAL INTRODUCTION ...1

1.1 Persistent organic pollutants (POPs) ...1

1.1.1 The definition and overview..1

1.1.2 General properties of POPs ..2

1.1.3 Sources, transport and distribution of POPs...2

1.2 POPs selected in the present study ..3

1.2.1 Polycyclic aromatic hydrocarbons (PAHs) ..5

1.2.2 Organochlorine pesticides (OCPs) ..5

1.2.3 Polybrominated diphenyl ethers (PBDEs) and their structural analogues...6

1.3 Aquaculture in the Pearl River Delta (PRD) ..8

1.4 Distribution of POPs in aquaculture systems in the PRD region10

1.5 Bioaccessibility studies ..12

1.5.1 Definitions of bioaccessibility..12
1.5.2 Methods to assess oral bioavailability .. 13

1.6 Health risk assessment .. 15

1.6.1 Non-cancer toxic risk ... 15

1.6.2 Cancer risk ... 15

1.7 Objectives of the present study .. 17

1.8 Framework ... 18

CHAPTER 2. DISTRIBUTION OF PAHs and OCPs IN FRESHWATER FISHPOND SEDIMENTS COLLECTED FROM THE PRD ... 21

2.1 Introduction ... 21

2.2 Materials and Methods ... 23

2.2.1 Study area and sample collection ... 23

2.2.2 Sample extraction ... 23

2.2.3 Instrumental analyses .. 26

2.2.4 QA/QC ... 27

2.2.5 PAH source analyses .. 27

2.2.6 Statistical analyses .. 28

2.3 Results and discussion ... 28

2.3.1 The levels and distribution of PAH in freshwater fish pond sediments 28

2.3.2 PAHs source identification .. 33

2.3.3 Residues of total OCPs .. 38

2.3.4 The distribution and sources of DDTs ... 39

2.3.5 The distribution and sources of HCHs ... 42
CHAPTER 3 THE ENRICHMENT OF PAHs AND OCPs IN MARICULTURE SEDIMENTS

3.1 Introduction .. 45

3.2 Materials and methods ... 47

3.2.1 Study area ... 47

3.2.2 Sampling ... 48

3.2.3 Chemical analyses .. 48

3.2.4 QA/ QC ... 51

3.2.5 Data analyses .. 51

3.3 Results and discussion ... 52

3.3.1 PAHs .. 52

3.3.2 OCPs .. 67

CHAPTER 4 PAHs AND OCPs IN FISH MUSCLE COLLECTED FROM FRESHWATER FISHPOND AND MARICULTURE ZONES IN THE PRD

4.1 Introduction .. 82

4.2 Materials and methods ... 84

4.2.1 Study area and sampling .. 84

4.2.2 Chemical analyses .. 88

4.2.3 Calculation of potency equivalent concentration (PEC), screening value (SV) and Cancer risks .. 88

4.2.4 Data analyses .. 89

4.3 Results and discussion ... 89
4.3.1 PAHs .. 89
4.3.2 DDTs .. 94
4.3.3 HCHs .. 95
4.3.4 Contributing factors of PAHs and OCPs in fish muscle 101
4.3.5 Health risk assessment ... 102

CHAPTER 5: EXPOSURE OF HONG KONG RESIDENTS TO PBDEs AND THEIR
STRUCTURE ANALOGUES THROUGH MARKET FISH CONSUMPTION 108

5.1 Introduction .. 108
5.2. Materials and methods ... 110
 5.2.1 Sample collection and treatment ... 110
 5.2.2 Extraction and Cleanup ... 110
 5.2.3 Quantification .. 112
 5.2.4 Targeted compounds ... 113
 5.2.5 QA/QC ... 115
 5.2.6 Data analyses ... 115
 5.2.7 Estimated daily intake and risk evaluation ... 116
5.3. Results and discussion .. 116
 5.3.1 Concentrations of PBDEs and structural analogues 116
 5.3.2 Congener profiles .. 119
 5.3.3 Potential source apportionments ... 121
 5.3.4 Intake estimation and risk evaluation .. 124

CHAPTER 6 ORAL BIOACCESSIBILITY OF PAHs AND OCPs THROUGH FISH
CONSUMPTION, BASED ON AN IN VITRO DIGESTION MODEL

6.1. Introduction .. 128

6.2 Materials and methods ... 130
 6.2.1 Sample collection and preparation ... 130
 6.2.2 Digestible fraction ... 131
 6.2.3 Calculation .. 133

6.3 Results and discussion ... 134
 6.3.1 PAHs ... 134
 6.3.2 OCPs ... 146

CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS ... 164

7.1 Introduction .. 164

7.2 Distribution of PAHs and OCPs in fish and sediments collected from the PRD. 164
 7.2.1 The levels of PAHs and OCPs in freshwater and marine aquaculture sediments ... 165
 7.2.2 The PAHs, DDTs and HCHs in fish muscle collected from the PRD........... 167
 7.2.3 The sources of PAHs and OCPs in fish muscle ... 168
 7.2.4 Health risk assessment and fish consumption advisories 170

7.3 The enrichment of PAHs and OCPs in mariculture sediments 170
 7.3.1 Enrichment percentages of PAHs, HCHs and DDTs in mariculture sediments .. 172
 7.3.2 The source differences of POPs between mariculture and natural sediments .. 172
7.3.3 The enriched POPs could be attributed to human aquaculture activities and associated control advisories... 174

7.4 PBDEs and their structural analogues in market fish muscle 175

7.5 Bioaccessibility of PAHs, HCHs and DDTs via fish consumption 177

7.5.1 The concentrations and bioaccessibility of PAHs, HCHs and DDTs 177

7.5.2 Risk assessment based on total and digestible PAHs, HCHs and DDTs ... 178

7.5.3 Individual POPs accumulation and contributing factors......................... 178

7.5.4 Relevant fish consumption advisories on the basis of bioaccessibility 179

7.6 General conclusions .. 182

7.7 Limitations of the present study .. 184

7.8 Future work .. 185

References ... 187

PUBLICATIONS ... 224

CURRICULUM VITAE.. 228