Differential Effects of Neurokinins in Models of Parkinson’s Disease

CHU Man Tak

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Principle Supervisor: Prof. YUNG Kin Lam

Hong Kong Baptist University

June 2011
Abstract

Parkinson’s disease (PD) is one of the serious motor disorders among the world. It is caused by the degeneration of dopaminergic neurons in substantia nigra (SN). Neurokinin (NK), also called tachykinin, is a group neuropeptide that is suggested to be involved in the pathogenesis of Parkinson’s disease. NK functions are mediated by respective neurokinin subtype receptors that belong to the member of G-protein-coupled receptors (GPCR). NK receptors can be divided into 3 subtypes: NK1, NK2 and NK3 receptors. Different NK natural ligands were found to mediate cell survival or cell death in central nervous system (CNS).

In the present study, the localization of NK1 and NK3 receptor in striatal and nigral neurons were determined. The effects of NK1 and NK3 receptor agonist, septide and senktide, were investigated in 6-OHDA lesioned PD models. Present results revealed the localization of NK1 receptors and NK3 receptors with γ-amino-butyратnergic (GABA), cholinergic, dopaminergic neurons and N-methyl-D-aspartate (NMDA) receptor 1. After 6-OHDA lesion, the modulation of NK1 and NK3 receptor were investigated by Western blotting. These data reviewed the localization pattern of NK receptors, which provide some clues on how neurokinins involve in the basal ganglia circuit activities in striatum and substantia nigra.

Furthermore, NK1 receptor agonist septide and NK3 receptor agonist senktide were used to investigate their differential effects on dopaminergic system in PD models. The number of apomorphine-induced contralateral rotations of 6-OHDA lesioned rats was significantly increased and this behavior could be attenuated by the injection of septide. Septide was also demonstrated to protect TH-immunoreactive neurons and terminals in SN and striatum from 6-OHDA toxicity in rat CNS by immunofluorescence and Western blotting. Revealing of protein molecules in Akt/PKB pathway was demonstrated and increase of phosphorylation of Akt/PKB was found in SN and striatal neurons. For the downstream molecules, phosphorylation of Bad and cleavage of caspase 3 were reviewed. In septide treated SN neurons, phosphorylation of Bad was seen, but no significant reduction of cleaved caspase 3 expression was found. In in vitro model, septide was pretreated in SH-SY5Y cultures before challenging with 6-ODHA. And septide could reduce the cytotoxicity of 6-ODHA. Also, higher expression of phosphorylated Akt/PKB and Bad were found in 6-OHDA-treated SH-SY5Y culture after septide treatment, demonstrating the
neuroprotective effects of septide on human neuroblastoma cells.

On the other hand, activation of NK3 receptors by its agonist senktide exerted a deleterious effect on 6-OHDA lesioned rats. Although no significant reduction of dopaminergic degeneration was shown after 2 days senktide injection, exacerbation of rotation behavior in apomorphine rotation test and dopaminergic degeneration in striatum and SN were found after 7 days senktide post injection. To further confirm the working mechanisms of NK3 receptor and its agonist, phosphorylation of NR1 receptor was first examined in SN region in rats. And expressions of phosphorylated NR 1 were significant increased after 2 days senktide treatment in 6-OHDA lesioned rats. Finally, the expression of phosphorylated JNK/SAPK was examined in SN and striatal neurons. Significant up-regulation of expression of phosphorylated JNK/SAPK was discovered in SN and striatum region after 2 days senktide treatment in 6-OHDA lesioned rats. These evidences suggested that NK1 agonists and NK3 agonists have differential effects on PD models. NK1 agonists exerted neuroprotective effects in PD models while NK3 agonists provided detrimental effects in PD models. These findings may imply the role of neurokinin and its receptors on the pathology and treatment of Parkinson’s disease.
Table of Contents

Declaration
Abstract
Acknowledgment
Table of Contents
List of Figures
List of Abbreviations

Chapter 1 Background and Literature Reviews
1.1 Parkinson’s Disease
1.1.1 Proposed mechanisms of pathogenesis in PD
1.2 The Basal Ganglia
1.2.1 Anatomical organization of basal ganglia
1.2.2 Striatum
1.2.2.1 Striatal medium spiny neurons
1.2.2.2 Striatal interneurons
1.2.3 Substantia nigra
1.2.4 Functional organization of basal ganglia: direct pathway and indirect pathway
1.3 Glutamate and its Receptor
1.3.1 Glutamate receptor types

1.3.2 N-methyl-D-aspartate receptor

1.4 *6-OHDA, a neurotoxin model of PD*

1.5 Neurokinin

1.5.1 Neurokinin 1 receptor agonist: Substance P

1.5.2 Neurokinin 1 receptor and its localization

1.5.3 Neurokinin 3 receptor agonist: Neurokinin B

1.5.4 Localization of neurokinin 3 receptor in CNS

1.5.5 Neurokinin receptor agonists: Septide and Senktide

1.6 *Cellular signaling pathway*

1.6.1 Akt/PKB signaling pathway

1.6.2 SAPK/JNK signaling pathway

1.7 Objectives of present thesis

Chapter 2 *Materials and Methods*

2.1 Animals

2.2 *Unilateral lesion*

2.2.1 6-OHDA medial forebrain bundle (MFB) lesion

2.2.2 6-OHDA striatal lesion
2.2.3 Behavioral test of 6-OHDA lesioned rats 37

2.2.4 NK1 and NK3 receptor agonists treatment in the striatal lesioned rats 37

2.3 Immunocytochemistry 38

2.3.1 Tissue preparation 38

2.3.2 Single immunofluorescence 38

2.3.3 Double Immunofluorescence 39

2.4 Western Blotting 40

2.4.1 Protein extraction 40

2.4.2 Protein assay and electrophoresis 40

2.4.3 Western Blotting 41

2.4.4 Stripping 42

2.5 Treatment in Neuronal Cell Line 42

2.5.1 SH-SY5Y cell culture 42

2.5.2 Effects of NK1 receptor agonist in 6-OHDA induced in vitro PD model 43

2.5.3 LDH cytotoxicity assay 44

2.5.4 Protein extraction and Western Blotting 45
Chapter 3 Expression of Neurokinin Receptors with Different Neuronal Markers in Adult Rats

3.1 Introduction 47

3.2 Objectives 49

3.3 Material and Methods 50

3.3.1 Animals 50

3.3.2 Unilateral 6-OHDA medial forebrain lesion 50

3.3.3 Apomorphine rotation tests 50

3.3.4 Immunofluorescence 50

3.3.5 Western Blotting 51

3.4 Results 52

3.4.1 NK1 and nK3 receptors expression in striatum and SN 52

3.4.2 Double Immunofluorescence showing neurokinin receptors expression with other neuronal markers in striatum of normal rat

3.4.2.1 Immunoreactivity for NK1 and NK3 receptors in PV 52

immunoreactive interneurons in the striatum

3.4.2.2. Immunoreactivity for NK1 and NK3 receptors in ChAT 52

immunoreactive interneurons in the striatum

3.4.2.3 Immunoreactivity for NK1 and NK3 receptors on NR1 53
receptors in the striatum

3.4.2.4 Immunoreactivity for NK1 and NK3 receptors on TH terminals in the striatum

3.4.2.5 Immunoreactivity for NK1 and NK3 receptors in SP containing interneurons in the striatum

3.4.3 Double Immunofluorescence showing neurokinin receptors expression with other neuronal markers in substantia nigra of normal rat

3.4.3.1 Immunoreactivity for NK1 and NK3 receptors in TH immunoreactive nigral neurons in the SN

3.4.3.2 Immunoreactivity for NK1 and NK3 receptors in PV immunoreactive nigral neurons in the SN

3.4.3.3 Immunoreactivity for NK1 and NK3 receptors on NR1 receptors in the SN

3.4.4 Changes of expression of neurokinin receptors in striatum and SN of 6-OHDA medial forebrain bundle lesioned rats

3.5 Discussion

3.5.1 Localization of NK1 and NK3 receptors in striatum and SN

3.5.2 Co-expression of NK1 and NK3 receptor immunoreactivity
with different types of neurons in the basal ganglia circuit

3.5.3 Implications of modulations of NK receptor expressions in striatum and SN after 6-OHDA medial forebrain bundle lesion

3.6 Conclusion

Chapter 4 Neuroprotective Effects of Neurokinin One

Receptor Agonist Septide in in vivo and in vitro Models

4.1 Introduction

4.1.1 Physiological effects of septide in nigrostriatal system

4.2 Objectives

4.3 Material and methods

4.3.1 Animals

4.3.2 6-OHDA unilateral striatal lesion

4.3.3 Apomorphine rotation test

4.3.4 Intrasstriatal septide treatment

4.3.5 Immunofluorescence

4.3.6 Cell culture

4.3.7 LDH cytotoxicity assay

4.3.8 Western Blotting
4.4 Results 111

4.4.1 Apomorphine induced rotation test 111

4.4.1.1 Control experiments for apomorphine rotation test 111

4.4.1.2 6-OHDA induced rotations in apomorphine test 111

4.4.2 Immunofluorescence 112

4.4.2.1 Control for Immunofluorescence 112

4.4.2.2 TH immunoreactivity in striatum 112

4.4.2.3 TH immunoreactivity in SN 113

4.4.3 Western Blotting 114

4.4.3.1 Control for Western Blotting 114

4.4.3.2 Changes of protein expression of TH in striatum 114

4.4.3.3 Changes of protein expression of TH in SN 115

4.4.3.4 Changes of protein expression of p-Akt in striatum 115

4.4.3.5 Changes of protein expression of p-Akt in SN 115

4.4.3.6 Changes of protein expression of p-Bad in SN 116

4.4.3.7 Changes of protein expression of cleaved-caspase 3 in SN 116

4.4.4 SH-SY5Y cell culture 117

4.4.4.1 Cytotoxicity of 6-OHDA against SH-SY5Y 117

4.4.4.2 Cytotoxicity of different concentrations of septide solutions 117
in SH-SY5Y

4.4.4.3 Cytotoxicity of 6-OHDA in SH-SY5Y after septide treatment 118

4.4.4.4 Protein expression in SH-SY5Y culture after 6-OHDA and septide treatment 118

4.5 Discussion 120

4.5.1 Septide treatment could improve the motor behavior responses of apomorphine induced rotation test in 6-OHDA lesioned rats 120

4.5.2 6-OHDA damages of dopaminergic system can be attenuated by in striatal administration of septide 123

4.5.3 Septide could trigger the cellular survival signaling by activating effectors of Akt/PKB pathway 125

4.5.4 Changes of expression of mitochondrial apoptotic molecules after septide treatment 127

4.5.5 Septide can reduce cytotoxicity of 6-OHDA in human neuronal cells 129

4.5.6 Expression of phosphorylated Akt/PKB and its downstream molecules in SH-SY5Y cell culture after septide pretreatment 131

4.5.7 Septide treatment may have therapeutic potential in treating PD 132
5.1 Introduction 162
5.2 Objectives 164
5.3 Materials and methods 165
5.3.1 Animals 165
5.3.2 6-OHDA unilateral striatal lesion 165
5.3.3 Apomorphine rotation test 165
5.3.4 Intrastriatal senktide treatment 165
5.3.5 Immunofluorescence 166
5.3.6 Western Blotting 166
5.4 Results 168
5.4.1 Apomorphine induced rotation test 168
5.4.2 Change of TH immunoreactivity and protein expression in striatum and SN after senktide treatment 168
5.4.3 Modulation of phosphorylation of NR1 receptor at serine 896 in SN 169

Chapter 5 Deterioration Effects of Neurokinin Three Receptor 162
Agonist Senktide in 6-OHDA Lesioned Models
5.4.4 Changes of expression of p-SAPK/JNK molecule in striatum and SN

5.5 Discussion

5.5.1 Modulation of apomorphine induced behavioral responses in 6-OHDA lesioned rats after senktide treatment

5.5.2 Exacerbation of dopaminergic degeneration by 6-OHDA in striatum and SN after NK3 receptor agonist senktide 7 days treatment

5.5.3 Senktide could activate the NR1 receptor in SN and increase the number of phosphorylated NR1 receptor.

5.5.4 Compared with septide, senktide triggered the phosphorylation of JNK molecules and exacerbated dopaminergic degeneration in SN and striatum

5.6 Conclusion

Chapter 6 General Discussion

List of References

Appendix I

Appendix II
Appendix III

Curriculum Vitae