Endogenous Neuroprotective Mechanisms In Early Stages Of Rat Parkinsonism

LUI Nga Ping

A thesis submitted in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. Ken K.L. YUNG

Hong Kong Baptist University

Sept 2011
Abstract

The present thesis reports a previously unknown self repair mechanism during extremely early stages of rat Parkinsonism. In the striatum of 6-hydroxydopamine-lesioned rat, nestin-positive reactive astrocytes appeared at post-lesion day 3 while very low levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) dimers, which were believed to initiate the signal transduction cascades for anti-apoptotic actions, were found. Peak levels of BDNF and GDNF found at post-lesion day 7 while nestin-positive astrocytes had started to disappear. In the substantia nigra, the specific patterns of nestin and BDNF expressions were similar to those of the striatum except no GDNF could be detected during the whole period. At post-lesion day 14, expressions of nestin-positive reactive astrocytes, BDNF and GDNF were curtained.

In addition, different molecular forms of the neurotrophic factors were studied. Under Western blotting, three forms of BDNF were visualized. They were Pro-BDNF (32 kDa), BDNF dimer (28 kDa) and BDNF monomer (14 kDa). For GDNF, only dimer form (32 kDa) could be detected. The functional dimer forms are important for the signal transduction. Two important cell survival signaling cascades, Phosphatidylinositol-3 kinases (PI3K)/Akt pathway and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway), could be activated by the functional forms of the neurotrophic factors. The phosphorylation of the kinases, Akt protein kinase and p44/42 MAPK protein kinase, as well as their downstream target, Bad, were explored in the study. The up-regulations of the phosphorylated p44/42 MAPK and the phosphorylated Bad at Ser 112 was detected at post-lesion day 3 and peaked at day 7. Although significant phosphorylation of Akt kinase could not be noted throughout the studied period, an up-regulation of the phosphorylated Bad at 136 was revealed from post-lesion day 3 and post-lesion day 14.

However, in ovariectomized lesioned rats, this endogenous neuroprotective mechanism was down-regulated. Less up-regulations of these molecules with a shorter time window was shown in the animals. GDNF was even hardly detected. The presence of estrogen might be important to the neuroprotective mechanism. Therefore, estrogen treatments with low dosage and high dosage were employed in the ovariectomized lesioned animals respectively. A partial restoration of the neuroprotective could be observed in the low-dose treatment while a more profound neuroprotection was found in the high-dose treatment. These data strongly suggest that there is an endogenous self repair effort by nestin-immunoreactive reactive astrocytes via releases of BDNF and GDNF in the striatum and release of BDNF in the substantia nigra. Estrogen may help enhance this neuroprotective process and
estrogen therapy could have significant implications in treatments of PD. Notably, the self repair effort is only functional within an extremely short time window immediately after onset.
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>Acknowledgements</td>
</tr>
<tr>
<td>Table of Contents</td>
</tr>
<tr>
<td>List of Figures</td>
</tr>
<tr>
<td>List of Abbreviations</td>
</tr>
</tbody>
</table>

1 Background and Literature Review 1

1.1 Parkinson’s Disease 1

1.2 The etiology of Parkinson’s disease 2

1.3 Basal ganglia 4

1.3.1 Anatomical structure of the basal ganglia 4

1.2.2 Functions of the basal ganglia 5

1.2.3 Microcircuitry of the basal ganglia 6

1.4 Search of novel therapy of Parkinson’s disease 8

1.5 Astocytes in the nervous system 10

1.5.1 Astrocytes and intermediate filaments 10

1.5.2 Neuroprotective roles of astrocytes 11

1.6 Neurotrophic factors 12

1.6.1 Brain-derived neurotrophic factor 13

1.6.2 Glial cell-line derived neurotrophic factor 14

1.7 Estrogen 17

1.7.1 Roles of estrogen in Parkinson’s disease 18
1.8 Apoptosis and cell survival signaling

1.8.1 Apoptosis and Bad proteins 20

1.8.2 Akt kinase signaling pathway 21

1.8.3 Mitogen-activated protein kinase signaling pathway 22

1.9 Animal models of Parkinsonism 22

1.9.1 6-hydroxydopamine model of Parkinsonism 23

2 Materials and Methods 29

2.1 Animals used 29

2.2 Unilateral 6-hydroxydopamine Lesion 29

2.3 Apomorphine-induced rotation test 30

2.4 Ovariectomy surgery 31

2.5 Tissue Preparation 32

2.5.1 Immunostaining 32

2.5.2 Western blotting analysis and enzyme-linked immunosorbent assay 32

2.6 Immunofluorescence 33

2.7 Double immunofluorescence 34

2.8 Processing for laser scan confocal microscopy 35

2.9 Western blotting analysis 36

2.10 Enzyme-linked immunosorbent assay 37

2.11 Calculations and statistical analysis 38
3 Endogenous expressions of brain-derived neurotrophic factor and glial cell-line derived neurotrophic factor in 6-hydroxydopamine-lesioned rat

3.1 Introduction

3.2 Objectives

3.3 Results

3.3.1 Motor behavioral test

3.3.2 Reduction in TH immunoreactivity of 6-hydroxydopamine-lesioned rats

3.3.3 Time-dependant expression of nestin in the 6-hydroxydopamine-lesioned rats

3.3.4 Co-localization of nestin and brain-derived neurotrophic factor in 6-hydroxydopamine-lesioned rats

3.3.5 Co-localization of nestin and glial cell line-derived neurotrophic factor in 6-hydroxydopamine-lesioned rats

3.3.6 Time-dependent expression of endogenous brain-derived neurotrophic factor

3.3.7 Time-dependent expression of total endogenous brain-derived neurotrophic factor

3.3.8 Time-dependent expression of endogenous glial cell line-derived neurotrophic factor

3.3.9 Time-dependent expression of total endogenous glial cell line-derived neurotrophic factors

3.3.10 Time-dependent expression of phosphorylated p44/42 MAPK (Erk1/2)

3.3.11 Time-dependent expression of phosphorylated Bad at Ser 112

3.3.12 Time-dependent expression of phosphorylated Akt

3.3.13 Time-dependent expression of phosphorylated Bad at Ser 136

3.4 Discussion

3.4.1 A potential endogenous neurotrophic mechanism

3.4.2 Significance of neurotrophic factors

3.4.3 Significance of endogenous neurotrophic factors

3.4.4 Neuroprotective mechanism of reactive astrocytes
4 Effects on the endogenous expression of brain-derived neurotrophic factor and glial cell-line derived neurotrophic factor in 6-hydroxydopamine-lesioned rat after ovariectomy

4.1 Introduction

4.2 Objectives

4.3 Results

 4.3.1 Motor behaviour test and TH immunoreactivity of ovariectomized parkinsonian rats
 4.3.2 Co-localization of nestin and neurotrophic factors in ovariectomized parkinsonian rats
 4.3.3 Reduced expression of endogenous neurotrophic factors
 4.3.4 Up-regulations of total endogenous neurotrophic factors at post-lesion day 5 and post-lesion day 7
 4.3.5 Transient expression of phosphorylated p44/42 MAPK (Erk1/2) and phosphorylated Bad at Ser 112
 4.3.6 Transient expression of phosphorylated Akt kinase and phosphorylated Bad at Ser 136

4.4 Discussion

 4.4.1 Estrogen and Parkinson’s disease
 4.4.2 Estrogen and brain derived neurotrophic factor
 4.4.3 Estrogen and glial cell line-derived neurotrophic factor

5 Effects of low-dose estrogen replacement on the endogenous expression of neurotrophic factors in 6-hydroxydopamine-lesioned and ovariectomized rat

5.1 Introduction

5.2 Objectives

5.3 Results

 5.3.1 Motor behavioural test of ovariectomized parkinsonian rats with estrogen replacement
 5.3.2 Reduction in TH immunoreactivity of ovariectomized parkinsonian rats with estrogen replacement
5.3.3 Co-localization of nestin and neurotrophic factors in ovariectomized parkinsonian rats with estrogen replacement
5.3.4 Up-regulations of endogenous brain-derived neurotrophic factor in the 6-hydroxydopamine-lesioned ovariectomized rats under low-dose estrogen treatment
5.3.5 Promotion of the total endogenous brain-derived neurotrophic factor in both ipsilateral striatum and substantia nigra under low-dose estrogen treatment
5.3.6 Ineffective regulation of the endogenous glial cell line-derived neurotrophic factor under low-dose estrogen treatment
5.3.7 Increase in phosphorylation of p44/42 MAPK (Erk1/2)
5.3.8 Increase in expression of phosphorylated Bad at Ser 112
5.3.9 Insignificant up-regulation of phosphorylated Akt and phosphorylated Bad at Ser 136

5.4 Discussion
5.4.1 Significance of low dose estrogen replacement
5.4.2 Estrogen, neurotrophic factors and cell survival

6 The effects of high-dose estrogen treatment in 6- hydroxydopamine-lesioned and ovariectomized rat
6.1 Introduction
6.2 Objectives
6.3 Results
6.3.1 Comparison of the rotation behavioural test and the tyrosine hydroxylase immunoreactivity of the ovariectomized parkinsonian rats with high- and low-dose of estrogen replacement
6.3.2 Endogenous expression of neurotrophic factors in high-dose estrogen treatment
6.3.3 Endogenous expression of p44/42 MAPK protein kinase in high-dose estrogen treatment
6.3.4 Phosphorylation of Bad at Ser 112 in high-dose estrogen treatment
6.3.5 Endogenous expression of phosphorylated Akt protein kinase
and phosphorylated Bad at Ser 136 in high-dose estrogen treatment

6.4 Discussion

6.4.1 Different dosages of estrogen treatment

6.4.2 Adverse effects of high-dose estrogen treatment

7 General discussions

7.1 Estrogen and nestin-expressed astrocytes

7.2 Cell survival pathways in the endogenous neuroprotective mechanisms

7.3 Contributions of exogenous estrogen in the endogenous neuroprotective mechanism

7.4 Conclusion

8 List of References

Curriculum Vitae