Bioremediation of Organochlorine Pesticides Contaminated Soil
with Microemulsions

ZHENG Guanyu

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal Supervisor: Prof. Jonathan W. C. WONG

Hong Kong Baptist University
August 2011
Abstract

Bioremediation is advantageous to remediate organochlorine pesticides (OCPs) contaminated soil because of its relative low cost and environmental safety. However, most OCPs, such as dichloro-diphenyl-trichloroethane (DDT) and gamma-hexachlorocyclohexane (γ-HCH), are poorly soluble in water, and contact tightly with soil particles through adsorption, electrostatic interaction and covalent bonding. Therefore, the degradation of OCPs in soils is usually slow and frequently unsatisfactory due to the difficulties in their transfer from soil particles to aqueous phase where degradative microorganisms could metabolize these compounds. As an alternative to synthetic surfactants, which are usually introduced into bioremediation processes to enhance the bioavailability of OCPs, microemulsion, which is a combination of surfactants, cosurfactants and oil phase, might be a potential candidate due to its much higher solubilization capacity than surfactant micelles.

The first experiment of this study investigated the suitability of four surfactants, Tween 80, Triton X-100, Brij 35 and Bile slats, for forming microemulsions with two vegetable oils: soybean oil and linseed oil. It was found that Tween 80, Triton X-100 and Brij 35 formed stable microemulsions with the two vegetable oils, whereas no stable microemulsion could be formed with bile salts. Almost all formed microemulsions exhibited higher solubilizing capacities than their respective surfactant solutions and the two vegetable oils selected were good candidates for the oil phase of microemulsions. Microemulsions based on Tween 80 exhibited the highest solubilizing capacities for both DDT and γ-HCH, and the solubilizing capacities of microemulsions decreased in the following order: Tween 80>Triton X-100>Brij 35.

To reveal potential factors influencing the solubilizing capacities of microemulsions for OCPs, microemulsion systems formed with both Tween 80 and Triton X-100 were studied in detail. These microemulsion systems effectively enhanced the solubilities of both DDT and γ-HCH and exhibited higher solubilizing capacities than their respective surfactant solution alone. With an increase of either cosurfactant to surfactant ratio (C/S ratio, w/w) or oil to surfactant ratio (O/S ratio, w/w), the solubilizing capacities of microemulsion systems increased remarkably. Between the two factors, O/S ratio played a more significant role than C/S ratio to increase the solubilizing capacities of microemulsions, indicating that the oil phase was more influential than cosurfactant in enhancing the solubilization of hydrophobic organic compounds in microemulsions. Among the microemulsion systems developed, the system formed with Triton X-100 or Tween 80, linseed oil as oil phase, the C/S ratio of 1:3 and O/S ratio of 1:10 exhibited the maximum solubilizing capacity for the two pesticides.

Sorption of components forming microemulsions and the effect of microemulsions on the desorption of the two OCPs in soil-water systems were investigated to reveal the feasibility of applying microemulsions to enhance the bioavailability of OCPs in soil environment. The effect of microemulsions formed with Tween 80 and Triton X-100, or also called oil-swollen micelles, on the solubilization and desorption of DDT and γ-HCH from both loam soil and clay soil were investigated. Results showed that the solubilizing capacities of microemulsions depend on the critical micelle concentration (CMC) of surfactant employed. Once the concentration of surfactants present in microemulsions exceeded their respective CMC, the microemulsions exhibited much higher solubilizing capacities than their counterpart surfactant solutions. Desorption tests revealed that microemulsions formed with either Tween 80 or Triton X-100 significantly enhanced the desorption of OCPs from both loam soil and clay soil.
However, compared with the efficiencies achieved by surfactant solutions only, microemulsions exhibited their superiority over their counterpart surfactants to desorb OCPs only in loam soil-water system while they were less effective in clay soil-water system, indicating that the presence of 1-pentanol and linseed oil might negatively influence the partition of OCPs into surfactant micelle cores in clay soil-water system. Further studies focusing on the distribution of Tween 80, 1-pentanol and linseed oil in soil-water system revealed that the difference in the sorption of linseed oil onto the two soils resulted in the different effects of microemulsions formed with Tween 80 on the desorption of OCPs in loam soil and clay soil systems. Therefore, microemulsions formed with Tween 80 and Triton X-100 are better candidates over conventional surfactants solutions to desorb OCPs from loam soil, which would consequently enhance the bioavailability of OCPs as well as other hydrophobic organic contaminants (HOCs) in soil environment during bioremediation processes of contaminated soil.

Three Sphingobium strains including S. indicum B90A, S. japonicum UT26 and S. francense Sp+ were screened for their abilities to degrade γ-HCH. Both S. indicum B90A and S. japonicum UT26 rapidly degraded γ-HCH at low temperature (4°C), while the degradation capability of S. francense Sp+ was relatively low. During the biodegradation at 4 °C, γ-HCH was converted to extremely low amounts of 1,2,4-trichlorobenzene (1,2,4-TCB) and 2,5-dichlorophenol (2,5-DCP), whereas most of γ-HCH was transformed to 2,5-Dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL) by S. japonicum UT26. It was therefore concluded that haloalkane dehalogenases in some Sphingobium strains were still very active at temperature as low as 4 °C and S. indicum B90A might be a good candidate for developing novel bioremediation techniques suitable for cold regions to decontaminate γ-HCH from soils or water systems. Furthermore, the biodegradation of γ-HCH by S. indicum B90A at 30°C was accelerated by the addition of both Tween 80 and microemulsions formed with Tween 80. Microemulsions formed with Tween 80 were much more effective than Tween 80 only; while microemulsions formed with Triton X-100 totally inhibited the biodegradation of γ-HCH by S. indicum B90A due to the toxicity of Triton X-100 for the bacteria.

Microemulsions formed with Tween 80 effectively enhanced the biodegradation of DDT by Phanerochaete chrysosporium, and the enhancement efficacy was about 2 times of Tween 80 solution. However, both Triton X-100 solution and microemulsions formed with Triton X-100 could not facilitate the biodegradation of DDT due to the intrinsic toxicity of Triton X-100 for P. chrysosporium. Further studies revealed that microemulsions formed with Tween 80 enhanced the biodegradation of DDT through transporting DDT from crystalline phase to mycelium of P. chrysosporium as well as their positive effect on the growth of P. chrysosporium. Therefore, microemulsions formed with Tween 80 are good candidates over conventional non-ionic surfactants to enhance the biodegradation of DDT by the white rot fungi like P. chrysosporium.

The addition of microemulsions enhanced the bioremediation efficiency of γ-HCH contaminated soils; in this process, microemulsions enhanced both the bioavailability of γ-HCH and the growth of the degradative bacteria. After 21 days incubation, 50 mg/kg soil of γ-HCH was effectively removed from contaminated soil. However, the addition of microemulsions did not significantly enhance the removal rate of DDT when the initial concentration of DDT was 2 mg/kg soil, and enhanced the removal rate from 42.5% to 62.3% when the initial concentration of DDT was 25 mg/kg. These results revealed that although microemulsions could enhance the bioavailability of DDT during the bioremediation of soils contaminated with relatively high concentration of DDT, the relatively lower biodegradation ability of P. chrysosporium for DDT still severely restricted the bioremediation efficacy.
Therefore, it is concluded that microemulsions formed with Tween 80 are promising alternatives to synthetic surfactants in enhancing the bioremediation efficiency of OCPs contaminated soils. This innovative technique combining microemulsions and bioremediation expands the scope of soil bioremediation and provides an efficient and safe way for the remediation of soil contaminated by organochlorine pesticides.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1. Objectives

1.1. Introduction

1.2. Research objectives and outline of the present study

Chapter 2. Literature review

2.1. An overview of organochlorine pesticides

2.1.1. Sources of organochlorine pesticides contamination

2.1.2. Physicochemical properties of organochlorine pesticides

2.1.3. Fate of organochlorine pesticides in the environment

2.1.4. Health and environmental impact of organochlorine pesticides

2.2. Approaches for remediation of organochlorine pesticides contaminated soil

2.2.1. Physico-chemical technologies to remove organochlorine pesticides contaminants

2.2.2. Phytoremediation

2.2.3. Bioremediation

2.3. Bioavailability of contaminants in soil

2.3.1. Desorption of contaminants from soil

2.3.2. Dissolution of contaminants

2.3.3. Mobilization of contaminants

2.3.4. Detachment of microdroplets

2.3.5. Uptakes of contaminants by bacteria

2.4. Relationship between mass transfer rates and biodegradation
rates

2.5 Biodegradation of DDT and γ-HCH 24

2.6 Microemulsions 29
 2.6.1. Overview of microemulsions 29
 2.6.2. Application of microemulsions in soil decontamination 32

Chapter 3. Screening surfactants suitable for the formation of microemulsions 37

3.1. Introduction 37

3.2. Materials and Methods 39
 3.2.1. Organochlorine pesticides 39
 3.2.2. Surfactants, cosurfactant and vegetable oils 39
 3.2.3. Formation of microemulsions based on surfactants, cosurfactant and vegetable oils 40
 3.2.4. Microemulsions stability evaluation 41
 3.2.5. Solubilization of DDT and γ-HCH in microemulsions formed 41

3.3. Results and Discussion 42
 3.3.1. Formation of microemulsions based on different surfactants 42
 3.3.2. Solubilities of DDT and γ-HCH in the selected vegetable oils 44
 3.3.3. Water solubility enhancement of DDT and γ-HCH by stable microemulsions formed 45
 3.3.4. Analysis of the efficacy of microemulsions on the water solubility enhancement of DDT and γ-HCH 51

3.4 Conclusions 52

Chapter 4. Factors influencing solubilization enhancement of organochlorine pesticides by microemulsions based on non-ionic surfactants 54

4.1. Introduction 57

4.2. Materials and Methods 57
 4.2.1. Materials 57
 4.2.2. Microemulsion region determination 57
 4.2.3. Solubilization study 58

4.3. Results and Discussion 59
 4.3.1. Formation of microemulsion with non-ionic surfactants and plant oils 59
 4.3.2. Effect of cosurfactant to surfactant ratio (C/S ratio, w/w) of microemulsions on the aqueous solubility 62
enhancement of DDT and γ-HCH

4.3.3. Effect of oil to surfactant ratio (O/S ratio, w/w) of microemulsions on the aqueous solubility enhancement of DDT and γ-HCH

4.4. Conclusions

Chapter 5. The effect of microemulsions on the distribution and transfer of organochlorine pesticides in soil-water systems

5.1. Introduction

5.2. Materials and Methods

5.2.1. Preparation of DDT/γ-HCH spiked soil

5.2.2. Preparation of microemulsions

5.2.3. Batch desorption study

5.2.4. Equilibrium partition of DDT/γ-HCH in soil-water systems in the presence of microemulsions

5.3. Results and Discussion

5.3.1. Solubilization of DDT and γ-HCH in diluted O/W microemulsions formed with non-ionic surfactants

5.3.2. Desorption of DDT and γ-HCH from soils by microemulsions formed with Tween 80

5.3.3. Desorption of DDT and γ-HCH from soils by microemulsions formed with Triton X-100

5.3.4. Effect of microemulsions formed with Tween 80 or Triton X-100 on the partition isotherms of organochlorine pesticides in loam soil-water system

5.3.5. Distribution of Tween 80, 1-pentanol and linseed oil in soil-water system during microemulsions based on Tween 80 enhancing organochlorine pesticides desorption process

5.4. Conclusions

Chapter 6. Rapid degradation of lindane at low temperature by *Sphingobium* strains and the effect of microemulsions on the biodegradation processes

6.1. Introduction

6.2. Materials and Methods

6.2.1. Cultivation of bacterial strains

6.2.2. Degradation of γ-HCH by the three *Sphingomonas* strains at low temperature (4 °C)

6.2.3. Extraction and identification of biodegradation metabolites

6.2.4. Effect of microemulsions addition on the biodegradation of γ-HCH by *S. indicum* B90A at 30°C
Chapter 6. Results and Discussion

6.3. Degradation of \(\gamma \)-HCH by *S. indicum* B90A at 4 °C
6.3.2. Effect of inoculum size on the degradation of \(\gamma \)-HCH by *S. indicum* B90A at 4 °C
6.3.3. Degradation capacities of the three \(\gamma \)-HCH-degrading strains at 4 °C
6.3.4. Degradation products of \(\gamma \)-HCH by *S. indicum* B90A and *S. japonicum* UT26 at 4°C
6.3.5. Effect of microemulsions addition on the biodegradation of \(\gamma \)-HCH by *S. indicum* B90A at 30°C

6.4. Conclusions

Chapter 7. Non-ionic surfactants based microemulsion systems enhancing DDT biodegradation by *Phanerochaete chrysosporium*

7.1. Introduction
7.2. Materials and Methods
7.2.1. Materials
7.2.2. Microorganisms and their degradation abilities tests for DDT
7.2.3. Preparation of microemulsions
7.2.4. DDT degradation studies
7.2.5. Analysis

7.3. Results and Discussion
7.3.1. DDT degradation by the two white rot fungi
7.3.2. Effect of microemulsions formed with the two non-ionic surfactants on the degradation of DDT by *P. chrysosporium* ACCC 30553
7.3.3. Chemical fractionation of DDT during degradation process

7.4. Conclusions

Chapter 8. Enhanced bioremediation of organochlorine pesticides (OCPs) contaminated soils through microemulsions application

8.1. Introduction
8.2. Materials and Methods
8.2.1. Materials
8.2.2. Microorganisms and inoculum preparation
8.2.3. Preparation of DDT or \(\gamma \)-HCH contaminated soil
8.2.4. Bioremediation of organochlorine pesticides contaminated soil
8.2.5. Determination of DDT and \(\gamma \)-HCH concentrations in contaminated soil
8.2.6. Population determination of both degradative and total microorganisms 156
8.2.7. pH and nutrient measurement 157
8.2.8. Statistical analysis 157

8.3. Results and Discussion 157
8.3.1. Kinetics of residual γ-HCH concentrations during bioremediation of contaminated soils 158
8.3.2. Changes of total bacterial counts and degradative bacterial (S. indicum B90A) counts during the bioremediation of γ-HCH contaminated soils 161
8.3.3. Changes of soil pH and dissolve organic carbon with time 164
8.3.4. Kinetics of residual DDT concentrations during bioremediation of soil contaminated with DDT 166

8.4. Conclusions 171

Chapter 9. General Discussion, Conclusions and Recommendations for Future Research 172

9.1. Introduction 172
9.2. Formulation of microemulsions and factors influencing their solubilizing capacities for OCPs 173
9.3. Effect of microemulsions on the distribution of organochlorine pesticides in soil-water systems 174
9.4. Effect of microemulsion on the biodegradation of γ-HCH and DDT by Sphingobium indicum B90A and Phanerochaete chrysosporium, respectively 176
9.5. Application of microemulsions in the bioremediation of organochlorine pesticides contaminated soils 178
9.6. Recommendations for future research 179

References 181
Publications 220
Curriculum Vitae 222