Measuring Binding Kinetics of Ligands
with Tethered Receptors by Fluorescence Polarization
Complemented with
Total Internal Reflection Fluorescence Microscopy

KWOK Ka Cheung

A thesis submitted in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Principal supervisor: Prof CHEUNG Nai Ho

Hong Kong Baptist University

July 2010
Abstract

The study of the binding between estrogen receptors (ER) and their ligands in vitro has long been of interest mainly because of its application in anti-estrogen drug discovery for breast cancer treatment as well as in the screening of environmental contaminants for endocrine disruptors. Binding strength was conventionally quantified in terms of equilibrium dissociation constant (K_D). Recently, emphasis is shifting towards kinetics rate constants, and off-rate (k_{off}) in particular. This thesis reported a novel method to measure such binding kinetics based on fluorescence polarization complemented with total internal reflection fluorescence (FP-TIRF). It used tethered receptors in a flow cell format. For the first time, the kinetics rate constants of the binding of full-length human recombinant ERα with its standard ligands were measured. k_{off} was found to range from 1.3×10^{-3} to 2.3×10^{-3} s$^{-1}$. k_{on} ranged from 0.3×10^5 to 11×10^5 M$^{-1}$ s$^{-1}$. The method could also be used to screen potential ligands. Motivated by recent findings that ginsenosides might be functional ligands of nuclear receptors, eleven ginsenosides were scanned for binding with ERα and peroxisome proliferator-activated receptor gamma (PPARγ). None of the ginsenosides showed significant binding to ERα, but Rb1 and 20(S)-Rg3 exhibited significant specific binding with PPARγ.
Table of Contents

Declaration .. i
Abstract ... ii
Acknowledgments .. iii
Table of Contents ... iv
List of Tables ... viii
List of Figures ... ix
List of Abbreviations .. xiv

Chapter 1 Introduction ... 1

Chapter 2 Background .. 4

 2.1 Receptor ligand interaction .. 4

 2.1.1 Nuclear Receptor superfamily .. 4
 2.1.2 Estrogen receptor structure and function ... 5
 2.1.3 Breast cancer and drug discovery .. 10
 2.1.4 Endocrine disruptors and contaminant screening ... 12
 2.1.5 Peroxisome proliferator-activated receptors .. 13
 2.1.6 Ginsenosides .. 14

 2.2 *In-vitro* binding assays ... 16

 2.2.1 Mass difference assays ... 16
 2.2.2 Surface plasmon resonance (SPR) .. 16
 2.2.3 Fluorescence assays .. 18
2.2.4 Total internal reflection fluorescence (TIRF) 19

2.2.5 Total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) ... 20

2.2.6 Total internal reflection with fluorescence photobleaching recovery (TIR-FPR) .. 21

2.2.7 Total internal reflection with reflectance interferometry (TIR-RIf) ... 22

2.2.8 Fluorescence polarization (FP) .. 23

2.2.9 Free probes versus tethered probes .. 24

Chapter 3 Methods ... 26

3.1 FP-TIRF setup ... 26

3.2 Setup optimization and calibration ... 27

3.3 Flow cell fabrication and fluidics ... 29

3.3.1 Flow cell fabrication .. 30

3.3.2 Fluidics .. 31

3.4 Channel surface preparation .. 32

3.4.1 Coating with PEG ... 32

3.4.2 Immobilization of primary and secondary antibody 33

3.4.3 Receptor preparation and tethering 34

3.5 Ligand preparation ... 36

3.6 Program for real-time data capture and display 36

3.7 Data runs .. 38
3.7.1 Kinetics data capture for surface tethered receptors 38
3.7.2 Kinetics data capture for free receptors and ligands in solution .. 39
3.7.3 Screening ginsenosides for binding with nuclear receptors 40
3.8 Data analysis – From fluorescence anisotropy to bound fraction 41
3.9 Kinetics modeling ... 43
3.10 Rapid mixing assumption .. 44

Chapter 4 Results and discussion ... 46
4.1 Characterization of the FP-TIRF setup 47
 4.1.1 Correcting for // and \ perpendicular arm imbalance 47
 4.1.2 Monitoring [F] .. 48
 4.1.3 Consistency of FP and TIRF ... 48
4.2 Characterization of each tether link 51
 4.2.1 Strength and specificity of tether 52
 4.2.2 Tethering preserved receptor function 57
 4.2.3 Tethering preserved the random orientation of μ 59
4.3 Binding kinetics of the fluorescent ligand with ERα 62
4.4 Justify rapid mixing assumption .. 68
4.5 Binding kinetics of nonfluorescent ligands with ERα 72
4.6 Positive and negative controls ... 78
4.7 Screening ginsenosides for ERα binding 80
4.8 Screening ginsenosides for PPARγ binding 82
4.9 Binding affinity and chemical structure 85
Chapter 5 Conclusion ... 91

List of References ... 94

Curriculum Vitae ... 100