Semantic Search of Multimedia Data Objects through Collaborative Intelligence

CHAN Wing Sze

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Principal Supervisor: Prof. LEUNG Clement Ho Cheung

Hong Kong Baptist University

March 2010
Abstract

With the rapid advancement of multimedia technologies and the Internet, multimedia information can be easily created, shared and distributed, using not only computers, but also numerous other portable digital devices. As multimedia information has become fully ubiquitous in our lives, searching for multimedia data objects has thus become an important activity. It is certainly notable to be able to find a solution for searching multimedia information effectively and efficiently. However, this type of search is far more difficult than searching text-based documents since the inherent high-level semantic image features and concepts require a degree of intelligent judgement that cannot be mechanised or automated. Furthermore, the most challenging problem facing the semantic search of multimedia data objects is the ability to index them.

Here, we present an innovative approach that enables the semantic search of multimedia data object by the discovery and meaningful indexing of their semantic concepts. Such objects may include images, videos and different music or audio formats. The basic framework of our indexing approach is to capture human judgement from user search queries in order to build semantic indexes which relate search terms to the semantics of multimedia objects while maximising user
This approach is particularly effective for the retrieval of multimedia objects, such as images and audio and video data, where a direct analysis of the object features does not allow them to be related to search terms, e.g. non-textual/icon-based search, deep semantic search or when search terms are unknown at the time the multimedia repository was built.

By analysing the users' search queries, relevance feedback and selection patterns, semantic concepts can be discovered and migrated through an index hierarchy. Through the growth and evolution of the index hierarchy, the semantic index may be dynamically constructed, validated and augmented. Our system also incorporates a high degree of robustness and fault tolerance. We also incorporate genetic variations into the design to allow objects which may otherwise be hidden to be discovered. The index convergence behaviour and its modelling are examined. Experimental results indicate that the present approach is able to confer significant performance benefits in the semantic searching and discovery of a wide variety of multimedia data objects.

Keywords: Evolutionary, Genetic Algorithms, Multimedia Indexing, Relevance Feedback, Semantics
Table of Contents

Declaration i

Abstract ii

Acknowledgements iv

Table of Contents v

List of Figures xii

List of Tables xv

Chapter 1 Introduction 1

1.1 Semantic Indexing 2

1.2 Collaborative Approach 3

1.2.1 Collaborative Filtering And Recommendation Systems 4
Chapter 2 Literature Review

2.1 Background on Information Retrieval (IR) 10

2.2 Multimedia Information Representations 13

2.2.1 Acquisition And Digitisation .. 13

2.2.2 Image Representation .. 14

2.2.3 Audio Representation .. 15

2.2.4 Video Representation .. 16

2.3 Current Multimedia Information Retrieval (MIR) 18

2.3.1 Image Retrieval ... 18

2.3.2 Music Retrieval .. 19

2.3.3 Video Retrieval ... 20

2.3.4 Collaborative Information Retrieval 21

2.3.5 Challenges in Multimedia Information Retrieval 22
Chapter 3 Collaborative Evolutionary Indexing

3.1 Multimedia Indexing

3.1.1 Index Basic Element And Hierarchical Structure

3.1.2 Index Score Update Algorithms

3.1.2.1 Incrementing the Score

3.1.2.2 Decrementing the Score

3.1.3 Minimal Indexing And Maximal Indexing

3.1.3.1 Minimal Indexing

3.1.3.2 Maximal Indexing

3.1.3.3 Probability of Object Recovery

3.1.4 Index Growth And Evolution

3.1.4.1 Augmentation of an Existing Index Term

3.1.4.2 Addition of an Existing Index Term

3.1.4.3 An Example for Installing New Index Terms

3.1.4.4 Attaining Intelligence through Index Evolution

3.2 Influence of User Relevance Feedback
3.2.1 Explicit User Feedback - User Vote 47

3.2.2 Implicit User Feedback - User Selection 48

3.2.2.1 User Click Model 49

3.2.3 An Example of Index Evolution Workflow Affected by User Relevance Feedback 51

3.3 Ranking Approach 53

3.3.1 Naïve Strategy 53

3.3.2 Randomised Strategy with Genetic Algorithms 54

3.3.3 Elitism .. 58

3.4 Modelling Index Convergence Behaviour 59

3.4.1 Index Convergence Behaviour 59

3.4.2 Epidemic Models 63

3.5 Collective Wisdom Indexing for Advanced Multimedia Semantics 65

3.6 Summary ... 66

Chapter 4 Evolutionary Adaptive Search Engine 68

4.1 Index Architecture Overview 70

4.2 Evolutionary Self-Organising Search Engine 71
4.2.1 Static Search Engine 71
4.2.2 User Feedback 74
4.2.3 Adaptive Search Engine 75
4.3 Adaptive Search Engine Architecture 75
4.4 Query Processing .. 76
 4.4.1 Naïve Greedy Strategy 78
 4.4.2 Randomised Strategy 79
 4.4.2.1 Randomised Query Processing 80
 4.4.3 Coverage and Mutation 81
 4.4.4 Dynamic Elitism 82
4.5 Feedback Processing 84
 4.5.1 Positive Feedback 85
 4.5.2 Negative Feedback 85
 4.5.3 Increment/Decrement values 86
4.6 Introducing New Terms and New Objects 86
 4.6.1 Object Insertion 86
 4.6.2 Term Insertion 87
Chapter 5 Experiments And Evaluations

5.1 Measuring Indexing Performance

5.2 Evaluations

5.2.1 Recall And Precision

5.2.2 Global Feedback And Performance Evaluation

5.3 Experiments I: Index Growth And The Effect of Indexing

5.4 Experiments II: Index Convergence

5.4.1 The Robustness of Index Convergence

5.4.2 Decay Behaviour of Number of Remaining Index Terms And Index Convergence

5.4.3 Behaviour of Index Convergence Models And Epidemic Models

5.5 Experiments III: Convergence of Collective Adaptive Search Engine

5.5.1 User Model

5.5.1.1 Relevance Distribution Models

5.5.1.2 Feedback Model
5.5.1.3 Query Model ... 114

5.5.2 Parameters Tuning 114

5.5.3 Scalability and Queries/Objects Ratio 116

5.5.4 Static And Dynamic Elitism 118

5.6 Summary ... 124

Chapter 6 Conclusions And Future Works 125

6.1 Our Contributions .. 125

6.2 Future Works .. 128

6.2.1 Discover Similarity And Dissimilarity Among Multimedia Data Objects 128

6.2.2 Validation on User Relevance Feedback 128

Appendices ... 150

Chapter A System Interface 150

Chapter B Publication List 152

Curriculum Vitae .. 154